Câu hỏi:

30/06/2022 7,084

Trong không gian với hệ trục tọa độ Oxyz, cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình đáp án B có dạng\[{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\]với\[a = - 1,b = 2,c = 1\]và R=3 là phương trình mặt cầu.

Phương trình đáp án A có dạng\[{x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\]với\[a = - 1,b = - 1,c = - 1,d = - 8\]có\[R = \sqrt {{a^2} + {b^2} + {c^2} - d} = \sqrt {11} \]là một phương trình mặt cầu.

Xét phương án C có

\[2{x^2} + 2{y^2} + 2{z^2} - 4x + 2y + 2z + 16 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} - 2x + y + z + 8 = 0\]

Phương trình có dạng\[{x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\]với\[a = 1,b = - \frac{1}{2},c = - \frac{1}{2},d = 8\] có\[{a^2} + {b^2} + {c^2} - d = 1 + \frac{1}{4} + \frac{1}{4} - 8 < 0.\]

Không phải là phương trình mặt cầu.

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(S) có dạng\[{x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\] với\[a = - 1,b = - 1,c = - 2\] và d=m

(S)là phương trình mặt cầu khi ta có \[{a^2} + {b^2} + {c^2} - d > 0 \Leftrightarrow 6 - m > 0 \Leftrightarrow m < 6\]

Đáp án cần chọn là: D

Lời giải

Gọi M(x;y;z).

Theo bài ra ta có:

\[\begin{array}{*{20}{l}}{\,\,\,\,\,\,\,2M{A^2} + M{B^2} = 165}\\{ \Leftrightarrow 2\left[ {{{\left( {x - 1} \right)}^2} + {{\left( {y - 2} \right)}^2} + {{\left( {z - 3} \right)}^2}} \right] + \left[ {{{\left( {x - 4} \right)}^2} + {{\left( {y + 7} \right)}^2} + {{\left( {z + 9} \right)}^2}} \right] = 165}\\{ \Leftrightarrow 3{x^2} + 3{y^2} + 3{z^2} - 12x + 6y + 6z + 9 = 0}\\{ \Leftrightarrow {x^2} + {y^2} + {z^2} - 4x + 2y + 2z + 3 = 0}\end{array}\]

Do đó tập hợp các điểm M thỏa mãn yêu cầu bài toán là mặt cầu tâm\[I\left( {2; - 1; - 1} \right)\]

\[ \Rightarrow a = 2,\,\,b = - 1,\,\,c = - 1\], bán kính\[R = \sqrt {4 + 1 + 1 - 3} = \sqrt 3 \]

Vậy\[T = {a^2} + {b^2} + {c^2} + {R^2} = 4 + 1 + 1 + 3 = 9\]

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP