Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình mặt cầu đi qua ba điểm M(2;3;3),N(2;−1;−1),P(−2;−1;3) và có tâm thuộc mặt phẳng (α):2x+3y−z+2=0.
A.\[{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 10 = 0\]
B. \[{x^2} + {y^2} + {z^2} - 4x + 2y - 6z - 2 = 0\]
C. \[{x^2} + {y^2} + {z^2} + 4x - 2y + 6z + 2 = 0\]
D. \[{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 2 = 0\]
Quảng cáo
Trả lời:

- Liệt kê các phương trình mặt cầu cho trong 4 đáp án
+ A cho mặt cầu tâm\[{I_A}(1, - 1,1)\]và\[{R_A} = \sqrt {13} \]
+ B cho mặt cầu tâm\[{I_B}(2, - 1,3)\]và\[{R_B} = 4\]
+ C cho mặt cầu tâm\[{I_C}( - 2,1, - 3)\]và\[{R_C} = 2\sqrt 3 \]
+ D cho mặt cầu tâm\[{I_D}(1, - 1,1)\]và\[{R_D} = \sqrt 5 \]
- Kiểm tra các tâm có thuộc mặt phẳng \[(\alpha )\]hay không. Loại được đáp án C.
- Ta thấy\[{I_A} \equiv {I_D} = I(1, - 1,1)\],nên ta tính bán kính\[R = IM\]rồi so sánh với\[{R_A},{R_D}\]
Có \[IM = \sqrt {{1^2} + {4^2} + {2^2}} = \sqrt {21} \].Ta thấy\[IM \ne {R_A} \ne {R_D}\] Loại A và D
Đáp án cần chọn là: B
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\[{x^2} + {y^2} + {z^2} - 2x - 2y - 2z - 8 = 0.\]
B. \[{(x + 1)^2} + {(y - 2)^2} + {(z - 1)^2} = 9.\]
C. \[2{x^2} + 2{y^2} + 2{z^2} - 4x + 2y + 2z + 16 = 0\]
D. \[3{x^2} + 3{y^2} + 3{z^2} - 6x + 12y - 24z + 16 = 0\]
Lời giải
Phương trình đáp án B có dạng\[{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\]với\[a = - 1,b = 2,c = 1\]và R=3 là phương trình mặt cầu.
Phương trình đáp án A có dạng\[{x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\]với\[a = - 1,b = - 1,c = - 1,d = - 8\]có\[R = \sqrt {{a^2} + {b^2} + {c^2} - d} = \sqrt {11} \]là một phương trình mặt cầu.
Xét phương án C có
\[2{x^2} + 2{y^2} + 2{z^2} - 4x + 2y + 2z + 16 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} - 2x + y + z + 8 = 0\]
Phương trình có dạng\[{x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\]với\[a = 1,b = - \frac{1}{2},c = - \frac{1}{2},d = 8\] có\[{a^2} + {b^2} + {c^2} - d = 1 + \frac{1}{4} + \frac{1}{4} - 8 < 0.\]
Không phải là phương trình mặt cầu.
Đáp án cần chọn là: C
Lời giải
(S) có dạng\[{x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\] với\[a = - 1,b = - 1,c = - 2\] và d=m
(S)là phương trình mặt cầu khi ta có \[{a^2} + {b^2} + {c^2} - d > 0 \Leftrightarrow 6 - m > 0 \Leftrightarrow m < 6\]
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.\[{(x - 1)^2} + {y^2} + {z^2} = \sqrt {13} \]
B. \[{(x - 1)^2} + {y^2} + {z^2} = 13\]
C. \[{(x + 1)^2} + {y^2} + {z^2} = 17\]
D. \[{(x + 1)^2} + {y^2} + {z^2} = 13\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\[2\sqrt 6 .\]
B. \[2\sqrt 2 .\]
C. \(4\sqrt 2 \)
D. \(\sqrt 6 \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.M(3;6;9)
B.M(1;2;−9)
C.M(1;2;9)
D.M(−1;−2;1)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.