Câu hỏi:

30/06/2022 107

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 2 + \left( {{m^2} - 2m} \right)t}\\{y = 5 - \left( {m - 4} \right)t}\\{z = 7 - 2\sqrt 2 }\end{array}} \right.\)

và điểm A(1;2;3). Gọi S là tập các giá trị thực của tham số m để khoảng cách từ A đến đường thẳng Δ có giá trị nhỏ nhất. Tổng các phần tử của S là

Đáp án chính xác
Câu hỏi trong đề:   Phương trình đường thẳng !!

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng  (ảnh 1)

Đường thẳng \[\Delta \] đi qua điểm\[M\left( {2;5;7 - 2\sqrt 2 } \right)\] và nhận\[\vec u = \left( {{m^2} - 2m;4 - m;0} \right)\] làm VTCP.

Có\[\overrightarrow {AM} = \left( {1;3;4 - 2\sqrt 2 } \right) \Rightarrow AM = \sqrt {34 - 16\sqrt 2 } \]

Để\[d\left( {A,{\rm{\Delta }}} \right) = A{H_{\min }}\]  thì\[\sin \alpha = \frac{{AH}}{{AM}}\] đạt GTNN hay cosα đạt GTLN.

\[\cos \alpha = \cos \left( {AM,{\rm{\Delta }}} \right) = \frac{{\left| {\overrightarrow {AM} .\vec u} \right|}}{{\left| {\overrightarrow {AM} } \right|.\left| {\vec u} \right|}} = \frac{{\left| {\left( {{m^2} - 2m} \right) + 3\left( {4 - m} \right)} \right|}}{{\sqrt {34 - 16\sqrt 2 } .\sqrt {{{\left( {{m^2} - 2m} \right)}^2} + {{\left( {4 - m} \right)}^2}} }}\]

\[\left| {\left( {{m^2} - 2m} \right) + 3\left( {4 - m} \right)} \right| \le \sqrt {{1^2} + {3^2}} .\sqrt {{{\left( {{m^2} - 2m} \right)}^2} + {{\left( {4 - m} \right)}^2}} \]

\[ \Rightarrow \frac{{\left| {\left( {{m^2} - 2m} \right) + 3\left( {4 - m} \right)} \right|}}{{\sqrt {34 - 16\sqrt 2 } .\sqrt {{{\left( {{m^2} - 2m} \right)}^2} + {{\left( {4 - m} \right)}^2}} }} \le \frac{{\sqrt {10} }}{{\sqrt {34 - 16\sqrt 2 } }}\]

\[ \Rightarrow \cos \alpha \] đạt GTLN nếu

\[\frac{{{m^2} - 2m}}{1} = \frac{{4 - m}}{3} \Leftrightarrow 3{m^2} - 6m = 4 - m \Leftrightarrow 3{m^2} - 5m - 4 = 0\]

Phương trình này có hai nghiệm phân biệt do ac<0 nên tổng các giá trị của m là \(\frac{5}{3}\) .

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Điểm nào sau đây nằm trên đường thẳng \[\frac{{x + 1}}{2} = \frac{{y - 2}}{{ - 2}} = \frac{z}{1}\]?

Xem đáp án » 30/06/2022 1,361

Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho các điểm A(2,0,0),B(0,3,0),C(0,0,−4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:  

Xem đáp án » 30/06/2022 1,140

Câu 3:

Phương trình đường thẳng đi qua điểm A(1,2,3) và vuông góc với 2 đường thẳng cho trước: \[{d_1}:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\;\] và \[{d_2}:\frac{{x - 2}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{2}\] là: 

Xem đáp án » 30/06/2022 475

Câu 4:

Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm A(1,2,−3) và B(3,−1,1)?

Xem đáp án » 30/06/2022 431

Câu 5:

Cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = - t}\\{y = 1 - t}\\{z = t}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\). Điểm nào trong các điểm dưới đây thuộc đường thẳng d?

Xem đáp án » 30/06/2022 417

Câu 6:

Trong không gian Oxyz, cho đường thẳng (d) đi qua  \[{M_0}\left( {{x_0},{y_0},{z_0}} \right)\;\;\]và nhận \[\overrightarrow u = \left( {a,b,c} \right),\;\;{a^2} + {b^2} + {c^2} > 0\;\]làm một vecto chỉ phương. Hãy chọn khẳng định sai trong bốn khẳng định sau?

Xem đáp án » 30/06/2022 389

Câu 7:

Trong không gian với hệ tọa độ Oxyz,  phương trình tham số của đường thẳng \[{\rm{\Delta }}:\frac{{x - 4}}{1} = \frac{{y + 3}}{2} = \frac{{z - 2}}{{ - 1}}\] là:

Xem đáp án » 30/06/2022 348

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn