Danh sách câu hỏi
Có 21,779 câu hỏi trên 436 trang
Một phần sân trường được định vị bởi các điểm \[A,\,\,B,\,\,C,\,\,D\] như hình vẽ.
Bước đầu chúng được lấy "thăng bằng" đế có cùng độ cao, biết \[ABCD\] là hình thang vuông ở \(A\) và \(B\) với độ dài \(AB = 25\,\,m,\,\,AD = 15\,\,m,\,\,BC = 18\,\,{\rm{m}}.\) Do yêu cầu kĩ thuật, khi lát phẳng phần sân trường phải thoát nước về góc sân ở \(C\) nên người ta lấy độ cao ở các điểm \[B,\,\,C,\,\,D\] xuống thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng. Giá trị của \(a\) là số nào sau đây?
Cho mặt phẳng \(\left( P \right):x - y - z - 1 = 0\) và hai điểm \(A\left( { - 5\,;\,\,1\,;\,\,2} \right),\,\,B\left( {1\,;\,\, - 2\,;\,\,2} \right).\) Trong tất cả các điểm \(M\) thuộc mặt phẳng \(\left( P \right)\), để \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} } \right|\) đạt giá trị nhỏ nhất thì điểm đó có tung độ \({y_M}\) là
Cho hình chóp \[S.ABCD\] có đáy là hình bình hành có thể tích bằng 48 . Trên cạnh \[SB,\,\,SD\] lấy các điểm \[M,\,\,N\] sao cho \(SM = MB\,,\,\,SD = 3SN.\) Mặt phẳng \(\left( {AMN} \right)\) cắt \[SC\] tại \[P.\] Thể tích \(V\) của khối tứ diện \[SMNP\] bằng
Trong không gian với hệ trục tọa độ \[Oxyz,\] điểm \(M\left( {a\,;\,\,b\,;\,\,c} \right)\) thuộc mặt phẳng \((P):x + y + z - 6 = 0\) và cách đều các điểm \(A\left( {1\,;\,\,6\,;\,\,0} \right),\,\,B\left( { - 2\,;\,\,2\,;\,\, - 1} \right),\,\,C\left( {5\,;\,\, - 1\,;\,\,3} \right).\) Tích \[abc\] bằng
Trong không gian với hệ tọa độ \[Oxyz,\] cho điểm \(I\left( {2\,;\,\,3\,;\,\, - 1} \right)\) và đường thẳng \(d:\frac{{x + 7}}{2} = \frac{{y + 9}}{1} = \frac{{z + 7}}{{ - 2}}.\) Phương trình mặt cầu tâm \(I\) và cắt đường thẳng \(d\) tại hai điểm \[A,\,\,B\] thoả mãn \(AB = 40\) là