Câu hỏi:

23/05/2022 9,105

Lập phương trình đường phân giác trong của góc A  của ΔABC biết A(2;0);B(4;1);C(1;2)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+ Cạnh AB đi qua hai điểm A,B nên phương trình cạnh AB:\[x - 2y - 2 = 0\]+ Cạnh AC đi qua hai điểm A,C nên phương trình cạnh \[AC:2x + y - 4 = 0\]+ Phương trình hai đường phân giác của góc A:

\(\frac{{x - 2y - 2}}{{\sqrt 5 }} = \pm \frac{{2x + y - 4}}{{\sqrt 5 }} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + 3y - 2 = 0(d)}\\{3x - y - 6 = 0(d\prime )}\end{array}} \right.\)

+ Xét đường phân giác \[\left( d \right):x + 3y - 2 = 0\]

Thế tọa độ điểm B  vào vế trái của\[d:{t_1} = 4 + 3.1 - 2 = 5 >0\]

Thế tạo độ điểm C  vào vế trái của d: \[{t_2} = 1 + 3.2 - 2 = 5 >0\]

Vì\[{t_1}.{t_2} >0\] nên B  và C  nằm cùng phía đối với d⇒d là đường phân giác ngoài

Vậy đường phân giác trong của góc A  là: \[d':3x - y - 6 = 0\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong mặt phẳng với hệ tọa độ Oxy,  cho hình chữ nhật ABCD  có điểm I(6;2) là giao điểm của 2  đường chéo AC  và BD.  Điểm M(1;5) thuộc đường thẳng AB  và trung điểm E  của cạnh CD  thuộc đườ (ảnh 1)

\[I\left( {6;2} \right);M\left( {1;5} \right)\]

\[{\rm{\Delta }}:x + y - 5 = 0,E \in {\rm{\Delta }} \Rightarrow E\left( {m;5 - m} \right);\]

Gọi N là trung điểm của AB

I  trung điểm  NE \( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{x_N} = 2{x_I} - {x_E} = 12 - m}\\{{y_N} = 2{y_I} - {y_E} = 4 - 5 + m = m - 1}\end{array}} \right.\)

\[ \Rightarrow N\left( {12 - m;m - 1} \right)\]

\[\overrightarrow {MN} = \left( {11 - m;m - 6} \right);\]

\[\overrightarrow {IE} = \left( {m - 6;5 - m - 2} \right) = \left( {m - 6;3 - m} \right)\]

\[\overrightarrow {MN} .\overrightarrow {IE} = 0 \Leftrightarrow \left( {11 - m} \right)\left( {m - 6} \right) + \left( {m - 6} \right)\left( {3 - m} \right) = 0\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m - 6 = 0}\\{14 - 2m = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 6}\\{m = 7}\end{array}} \right.\)

\[m = 6 \Rightarrow \overrightarrow {MN} = \left( {5;0} \right)\]nên phương trình AB là y = 5

\[m = 7 \Rightarrow \overrightarrow {MN} = \left( {4;1} \right)\] nên phương trình AB là \[x - 4y + 19 = 0\]Đáp án cần chọn là: A

Lời giải

Phương trình đường thẳng BC là y=0, vì \[M \in BC\;\] nên gọi M(m;0).

Ta có:\[\overrightarrow {AM} = \left( {m - 2; - 3} \right)\] nên\[\vec n = \left( {3;m - 2} \right)\] là 1 VTPT của đường thẳng AM.

Phương trình đường thẳng AM là:

\[\begin{array}{*{20}{l}}{3\left( {x - 2} \right) + \left( {m - 2} \right)\left( {y - 3} \right) = 0}\\{ \Leftrightarrow 3x + \left( {m - 2} \right)y - 6 - 3m + 6 = 0}\\{ \Leftrightarrow 3x + \left( {m - 2} \right)y - 3m = 0}\end{array}\]

\[\begin{array}{*{20}{l}}{ \Rightarrow d\left( {B;AM} \right) = \frac{{\left| {15 - 3m} \right|}}{{\sqrt {9 + {{\left( {m - 2} \right)}^2}} }}}\\{\,\,\,\,\,\,d\left( {C;AM} \right) = \frac{{\left| { - 3 - 3m} \right|}}{{\sqrt {9 + {{\left( {m - 2} \right)}^2}} }}}\end{array}\]

Ta có:

\(\left\{ {\begin{array}{*{20}{c}}{{S_{\Delta MAB}} = \frac{1}{2}d(B;AM).AM}\\{{S_{\Delta MAC}} = \frac{1}{2}d(C;AM).AM}\end{array}} \right. \Rightarrow {S_{\Delta MAB}} = 2{S_{\Delta MAC}}\)

\[ \Leftrightarrow d(B;AM) = 2d(C;AM)\]

\[\frac{{|15 - 3m|}}{{\sqrt {9 + {{(m - 2)}^2}} }} = 2\frac{{| - 3 - 3m|}}{{\sqrt {9 + {{(m - 2)}^2}} }}\]

\[ \Leftrightarrow |15 - 3m| = 2| - 3 - 3m|\]

\(\left[ {\begin{array}{*{20}{c}}{15 - 3m = - 6 - 6m}\\{15 - 3m = 6 + 6m}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = - 7}\\{m = 1}\end{array}} \right.\)

Vậy M(1;0) hoặc M(−7;0)

Đáp án cần chọn là: B

Câu 3

Cho đường thẳng \[\left( {\rm{\Delta }} \right):3x - 2y + 1 = 0\]Viết PTĐT (d)  đi qua điểm M(1;2)  và  tạo với \[\left( \Delta \right)\;\;\]một góc \({45^0}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP