Câu hỏi:

23/05/2022 1,049

Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật có hai cạnh nằm trên đường thẳng có phương trình lần lượt là \[2x - y + 3 = 02x - y + 3 = 0;\;\] và tọa độ một đỉnh là (2;3). Diện tích hình chữ nhật đó là: 

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta thấy\[{d_1}:\,\,\,2x - y + 3 = 0;\,\,\,{d_2}:\,\,\,x + 2y - 5 = 0\]là hai đường thẳng vuông góc.

Giả sử hình chữ nhật bài cho là ABCD có: 

\[AB:\,\,\,2x - y + 3 = 0;\,\,\,AD:\,\,\,x + 2y - 5 = 0\]

Thay tọa độ điểm (2;3) vào các phương trình đường thẳng AB,AD ta thấy (2;3) không thuộc các đường thẳng trên ⇒C(2;3).

\[ \Rightarrow {S_{ABCD}} = CB.CD = d(C;AB).d(C;AD)\]

\[\begin{array}{l} = \frac{{\left| {2.2 - 3 + 3} \right|}}{{\sqrt {{2^2} + {1^2}} }}.\frac{{\left| {2 + 2.3 - 5} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{4}{{\sqrt 5 }}.\frac{3}{{\sqrt 5 }} = \frac{{12}}{5}\,\,\,\left( {dvdt} \right)\\\end{array}\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng với hệ tọa độ Oxy,  cho hình chữ nhật ABCD  có điểm I(6;2) là giao điểm của 2  đường chéo AC  và BD.  Điểm M(1;5) thuộc đường thẳng AB  và trung điểm E  của cạnh CD  thuộc đường thẳng \[\Delta :x + y - 5 = 0.\].  Viết phương trình đường thẳng AB.

Xem đáp án » 23/05/2022 5,284

Câu 2:

Trên mặt phẳng tọa độOxy, cho tam giác ABC có tọa độ các đỉnh là A(2;3),B(5;0) và C(−1;0). Tìm tọa độ điểm M thuộc cạnh BC sao cho diện tích tam giác MAB bằng hai lần diện tích tam giác MAC

Xem đáp án » 17/05/2022 3,397

Câu 3:

Trong mặt phẳng với hệ toạ độ Oxy,  cho tam giác ABC  có phương trình đường phân giác trong góc A  là d1:x+y+2=0,  phương trình đường cao vẽ từ B  là d2:2xy+1=0,   cạnh AB  đi qua M(1;−1).  Tìm phương trình cạnh AC.

Xem đáp án » 23/05/2022 1,603

Câu 4:

Lập phương trình đường phân giác trong của góc A  của ΔABC biết A(2;0);B(4;1);C(1;2)

Xem đáp án » 23/05/2022 1,441

Câu 5:

Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng \[(d):3x - 4y - 12 = 0\]Phương trình đường thẳng \[\left( \Delta \right)\;\]đi qua M(2;−1) và tạo với (d) một góc \[{45^o}\] có dạng \[ax + by + 5 = 0\], trong đó a,b cùng dấu. Khẳng định nào sau đây đúng?

Xem đáp án » 23/05/2022 1,258

Câu 6:

Cho đường thẳng \[\left( {\rm{\Delta }} \right):3x - 2y + 1 = 0\]Viết PTĐT (d)  đi qua điểm M(1;2)  và  tạo với \[\left( \Delta \right)\;\;\]một góc \({45^0}\)

Xem đáp án » 23/05/2022 1,195

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store