Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có phương trình đường phân giác trong góc A là d1:x+y+2=0, phương trình đường cao vẽ từ B là d2:2x−y+1=0, cạnh AB đi qua M(1;−1). Tìm phương trình cạnh AC.
Quảng cáo
Trả lời:
Gọi N là điểm đối xứng của M qua \[{d_1} \Rightarrow N \in AC\]
\[\overrightarrow {MN} = ({x_N} - 1,\,\,{y_N} + 1)\]
Ta có: \[\overrightarrow {MN} \]cùng phương\[{\vec n_{{d_1}}} = (1;\,\,1)\]
\[ \Leftrightarrow \,\,1({x_N} - 1) - 1({y_N} + 1) = 0 \Leftrightarrow {x_N} - {y_N} = 2\,\,\,(1)\]
Tọa độ trung điểm I của\[MN:{x_I} = \frac{1}{2}\left( {1 + {x_N}} \right),{y_I} = \frac{1}{2}\left( { - 1 + {y_N}} \right)\]
\[I \in \left( {{d_1}} \right) \Leftrightarrow \frac{1}{2}\left( {1 + {x_N}} \right) + \frac{1}{2}\left( { - 1 + {y_N}} \right) + 2 = 0 \Leftrightarrow {x_N} + {y_N} + 4 = 0\,\,\,\,(2)\]
Giải hệ (1) và (2) ta được \[N\left( { - 1; - 3} \right)\]
Phương trình cạnh AC vuông góc với \[{d_2}\] có dạng: \[x + 2y + C = 0.\]
\[N \in AC \Leftrightarrow - 1 + 2.( - 3) + C = 0 \Leftrightarrow C = 7\]
Vậy, phương trình cạnh \[AC:x + 2y + 7 = 0.\]
Đáp án cần chọn là: CCâu 21. Xét trong mặt phẳng tọa độ Oxy, cặp điểm nào dưới đây nằm cùng phía so với đường thẳng \[x - 2y + 3 = 0?\]
A.M(0;1) và P(0;2).
B.P(0;2) và N(1;1).
C.M(0;1) và Q(2;−1).
D.M(0;1) và N(1;5).
Ta thế tọa độ M(0;1) và P(0;2) vào đường thẳng:
\[\left( {0 - 2.1 + 3} \right)\left( {0 - 2.2 + 3} \right) < 0\] nên loại A.
Ta thế tọa độ N(1;1) và P(0;2) vào đường thẳng:
\[\left( {1 - 2.1 + 3} \right)\left( {0 - 2.2 + 3} \right) < 0\] nên loại B.
Ta thế tọa độ M(0;1) và Q(2;−1) vào đường thẳng:
\[\left( {0 - 2.1 + 3} \right)\left( {2 - 2.\left( { - 1} \right) + 3} \right) >0\] nên chọn C.
Đáp án cần chọn là: C
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\[I\left( {6;2} \right);M\left( {1;5} \right)\]
\[{\rm{\Delta }}:x + y - 5 = 0,E \in {\rm{\Delta }} \Rightarrow E\left( {m;5 - m} \right);\]
Gọi N là trung điểm của AB
I trung điểm NE \( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{x_N} = 2{x_I} - {x_E} = 12 - m}\\{{y_N} = 2{y_I} - {y_E} = 4 - 5 + m = m - 1}\end{array}} \right.\)
\[ \Rightarrow N\left( {12 - m;m - 1} \right)\]
\[\overrightarrow {MN} = \left( {11 - m;m - 6} \right);\]
\[\overrightarrow {IE} = \left( {m - 6;5 - m - 2} \right) = \left( {m - 6;3 - m} \right)\]
\[\overrightarrow {MN} .\overrightarrow {IE} = 0 \Leftrightarrow \left( {11 - m} \right)\left( {m - 6} \right) + \left( {m - 6} \right)\left( {3 - m} \right) = 0\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m - 6 = 0}\\{14 - 2m = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 6}\\{m = 7}\end{array}} \right.\)
\[m = 6 \Rightarrow \overrightarrow {MN} = \left( {5;0} \right)\]nên phương trình AB là y = 5
\[m = 7 \Rightarrow \overrightarrow {MN} = \left( {4;1} \right)\] nên phương trình AB là \[x - 4y + 19 = 0\]Đáp án cần chọn là: A
Lời giải
+ Cạnh AB đi qua hai điểm A,B nên phương trình cạnh AB:\[x - 2y - 2 = 0\]+ Cạnh AC đi qua hai điểm A,C nên phương trình cạnh \[AC:2x + y - 4 = 0\]+ Phương trình hai đường phân giác của góc A:
\(\frac{{x - 2y - 2}}{{\sqrt 5 }} = \pm \frac{{2x + y - 4}}{{\sqrt 5 }} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + 3y - 2 = 0(d)}\\{3x - y - 6 = 0(d\prime )}\end{array}} \right.\)
+ Xét đường phân giác \[\left( d \right):x + 3y - 2 = 0\]
Thế tọa độ điểm B vào vế trái của\[d:{t_1} = 4 + 3.1 - 2 = 5 >0\]
Thế tạo độ điểm C vào vế trái của d: \[{t_2} = 1 + 3.2 - 2 = 5 >0\]
Vì\[{t_1}.{t_2} >0\] nên B và C nằm cùng phía đối với d⇒d là đường phân giác ngoài
Vậy đường phân giác trong của góc A là: \[d':3x - y - 6 = 0\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.