Câu hỏi:

23/05/2022 1,843

Trong mặt phẳng với hệ toạ độ Oxy,  cho tam giác ABC  có phương trình đường phân giác trong góc A  là d1:x+y+2=0,  phương trình đường cao vẽ từ B  là d2:2xy+1=0,   cạnh AB  đi qua M(1;−1).  Tìm phương trình cạnh AC.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 Trong mặt phẳng với hệ toạ độ Oxy,  cho tam giác ABC  có phương trình đường phân giác trong góc A  là d1:x+y+2=0,  phương trình đường cao vẽ từ B  là d2:2x−y+1=0,   cạnh AB  đi qua M(1;−1).  (ảnh 1)

Gọi N là điểm đối xứng của M  qua \[{d_1} \Rightarrow N \in AC\]

\[\overrightarrow {MN} = ({x_N} - 1,\,\,{y_N} + 1)\]

Ta có: \[\overrightarrow {MN} \]cùng phương\[{\vec n_{{d_1}}} = (1;\,\,1)\]

\[ \Leftrightarrow \,\,1({x_N} - 1) - 1({y_N} + 1) = 0 \Leftrightarrow {x_N} - {y_N} = 2\,\,\,(1)\]

 Tọa độ trung điểm I  của\[MN:{x_I} = \frac{1}{2}\left( {1 + {x_N}} \right),{y_I} = \frac{1}{2}\left( { - 1 + {y_N}} \right)\]

\[I \in \left( {{d_1}} \right) \Leftrightarrow \frac{1}{2}\left( {1 + {x_N}} \right) + \frac{1}{2}\left( { - 1 + {y_N}} \right) + 2 = 0 \Leftrightarrow {x_N} + {y_N} + 4 = 0\,\,\,\,(2)\]

Giải hệ (1)  và (2)  ta được \[N\left( { - 1; - 3} \right)\]

Phương trình cạnh AC vuông góc với \[{d_2}\] có dạng: \[x + 2y + C = 0.\]

\[N \in AC \Leftrightarrow - 1 + 2.( - 3) + C = 0 \Leftrightarrow C = 7\]

 Vậy, phương trình cạnh \[AC:x + 2y + 7 = 0.\]

Đáp án cần chọn là: CCâu 21. Xét trong mặt phẳng tọa độ Oxy, cặp điểm nào dưới đây nằm cùng phía so với đường thẳng \[x - 2y + 3 = 0?\]

A.M(0;1) và P(0;2).

B.P(0;2) và N(1;1).

C.M(0;1) và Q(2;−1).

D.M(0;1) và N(1;5).

Ta thế tọa độ M(0;1) và P(0;2) vào đường thẳng:

\[\left( {0 - 2.1 + 3} \right)\left( {0 - 2.2 + 3} \right) < 0\] nên loại A.

Ta thế tọa độ N(1;1) và P(0;2) vào đường thẳng:

\[\left( {1 - 2.1 + 3} \right)\left( {0 - 2.2 + 3} \right) < 0\] nên loại B.

Ta thế tọa độ M(0;1) và Q(2;−1) vào đường thẳng:

\[\left( {0 - 2.1 + 3} \right)\left( {2 - 2.\left( { - 1} \right) + 3} \right) >0\] nên chọn C.

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng với hệ tọa độ Oxy,  cho hình chữ nhật ABCD  có điểm I(6;2) là giao điểm của 2  đường chéo AC  và BD.  Điểm M(1;5) thuộc đường thẳng AB  và trung điểm E  của cạnh CD  thuộc đường thẳng \[\Delta :x + y - 5 = 0.\].  Viết phương trình đường thẳng AB.

Xem đáp án » 23/05/2022 6,800

Câu 2:

Trên mặt phẳng tọa độOxy, cho tam giác ABC có tọa độ các đỉnh là A(2;3),B(5;0) và C(−1;0). Tìm tọa độ điểm M thuộc cạnh BC sao cho diện tích tam giác MAB bằng hai lần diện tích tam giác MAC

Xem đáp án » 17/05/2022 4,740

Câu 3:

Lập phương trình đường phân giác trong của góc A  của ΔABC biết A(2;0);B(4;1);C(1;2)

Xem đáp án » 23/05/2022 2,434

Câu 4:

Cho đường thẳng \[\left( {\rm{\Delta }} \right):3x - 2y + 1 = 0\]Viết PTĐT (d)  đi qua điểm M(1;2)  và  tạo với \[\left( \Delta \right)\;\;\]một góc \({45^0}\)

Xem đáp án » 23/05/2022 1,524

Câu 5:

Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng \[(d):3x - 4y - 12 = 0\]Phương trình đường thẳng \[\left( \Delta \right)\;\]đi qua M(2;−1) và tạo với (d) một góc \[{45^o}\] có dạng \[ax + by + 5 = 0\], trong đó a,b cùng dấu. Khẳng định nào sau đây đúng?

Xem đáp án » 23/05/2022 1,403

Câu 6:

Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật có hai cạnh nằm trên đường thẳng có phương trình lần lượt là \[2x - y + 3 = 02x - y + 3 = 0;\;\] và tọa độ một đỉnh là (2;3). Diện tích hình chữ nhật đó là: 

Xem đáp án » 23/05/2022 1,221

Bình luận


Bình luận