Câu hỏi:

23/05/2022 295

Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn \[(Cm):{x^2} + {y^2} - 2mx - 4my - 5 = 0\] (m là tham số). Biết đường tròn (Cm) có bán kính bằng 5. Khi đó tập hợp tất cả các giá trị của m là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đường tròn\[({C_m}):{x^2} + {y^2} - 2mx - 4my - 5 = 0\](m là tham số) có bán kính bằng 5

\[ \Leftrightarrow {R^2} = {m^2} + 4{m^2} + 5 = 25 \Leftrightarrow 5{m^2} = 20 \Leftrightarrow {m^2} = 4 \Leftrightarrow m = \pm 2\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án B: \[4{x^2} + {y^2} - 10x - 6y - 2 = 0\] không phải là phương trình đường tròn vì hệ số của x2 là 4 và của y2 là 1.

Đáp án C: \[{x^2} + {y^2} - 2x - 8y + 20 = 0\] có\[a = 1\,\,,b = 4,\,\,c = 20\]

Ta thấy\[{a^2} + {b^2} = {1^2} + {4^2} = 17 < 20 = c\] Đây không phải là một phương trình đường tròn.

Đáp án D:\[{x^2} + {y^2} - 4x + 6y - 12 = 0\] có\[a = 2,\,\,b = - 3,\,\,c = - 12\]

Ta thấy \[{a^2} + {b^2} = {2^2} + {( - 3)^2} = 13 >- 12 = c\] Đây là một phương trình đường tròn.

Đáp án cần chọn là: D

Câu 2

Lời giải

\(\left( C \right):\left\{ {\begin{array}{*{20}{c}}{I(0;0)}\\{R = 1}\end{array}} \right. \to \left( C \right):{(x - 0)^2} + {(y - 0)^2} = 1 \to \left( C \right):{x^2} + {y^2} = 1.\)

Đáp án cần chọn là: B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP