Câu hỏi:

23/05/2022 340

Phương trình \[{x^2} - \left( {2 + \sqrt 3 } \right)x + 2\sqrt 3 = 0\]

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \[{x^2} - \left( {2 + \sqrt 3 } \right)x + 2\sqrt 3 = 0 \Leftrightarrow \left( {{x^2} - 2x} \right) - \left( {\sqrt 3 x - 2\sqrt 3 } \right) = 0\]

\[ \Leftrightarrow x\left( {x - 2} \right) - \sqrt 3 \left( {x - 2} \right) = 0 \Leftrightarrow \left( {x - 2} \right)\left( {x - \sqrt 3 } \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = \sqrt 3 }\end{array}} \right.\]

Vậy phương trình có hai nghiệm dương phân biệt.

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình \[\left( {x - 1} \right)\left( {{x^2} - 4mx - 4} \right) = 0\] .Phương trình có ba nghiệm phân biệt khi:

Xem đáp án » 23/05/2022 981

Câu 2:

Tìm tất cả các gía trị thực của tham số mm sao cho phương trình \[\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\] có hai nghiệm dương phân biệt.

Xem đáp án » 23/05/2022 745

Câu 3:

Giả sử các phương trình sau đây đều có nghiệm. Nếu biết các nghiệm của phương trình: \[{x^2}\; + px + q = 0\] là lập phương các nghiệm của phương trình \[{x^2} + mx + n = 0.\] Thế thì:

Xem đáp án » 23/05/2022 650

Câu 4:

Cho phương trình \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\]. Phương trình có hai nghiệm âm phân biệt khi và chỉ khi :

Xem đáp án » 23/05/2022 521

Câu 5:

Cho phương trình \[a{x^2} + bx + c = 0\] Đặt \(S = - \frac{b}{a},P = \frac{c}{a}\), hãy chọn khẳng định sai trong các khẳng định sau:

Xem đáp án » 23/05/2022 409

Câu 6:

Phương trình \[a{x^2} + bx + c = 0\;\] có nghiệm duy nhất khi và chỉ khi:

Xem đáp án » 23/05/2022 373

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store