Câu hỏi:
23/05/2022 444Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x + \sqrt {y - 1} = 1}\\{2y + \sqrt {x - 1} = 1}\end{array}} \right.\) có bao nhiêu nghiệm (x;y) ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Điều kiện: \[x,y \ge 1\]
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{2x + \sqrt {y - 1} = 1}\\{2y + \sqrt {x - 1} = 1}\end{array}} \right. \Rightarrow 2x - 2y + \sqrt {y - 1} - \sqrt {x - 1} = 0\)
\[ \Rightarrow 2\left( {x - y} \right) + \frac{{y - x}}{{\sqrt {y - 1} + \sqrt {x - 1} = 0}}\]
\[ \Rightarrow \left( {x - y} \right)\left( {2 - \frac{1}{{\sqrt {y - 1} + \sqrt {x - 1} }}} \right) = 0\]
Khi x = y thì \[2x + \sqrt {x - 1} = 1 \Rightarrow \sqrt {x - 1} = 1 - 2x\] (vô nghiệm do \[x \ge 1\] thì \[VT \ge 0,VP < 0\])
Khi \[\sqrt {y - 1} + \sqrt {x - 1} = \frac{1}{2}\] thì \[2x + 2y + \frac{1}{2} = 2 \Rightarrow x + y = \frac{3}{4}\] (vô nghiệm vì \[x,y \ge 1\])
Vậy hệ phương trình vô nghiệm.
Đáp án cần chọn là: B
</>
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi (x0;y0) là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\frac{3}{x} - \frac{6}{y} = 6}\\{\frac{2}{x} - \frac{1}{y} = - 2}\end{array}} \right.\)
Tìm \[{x_0} + {\rm{ }}{y_0}\]
Câu 2:
Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y = 4}\\{{x^2} + {y^2} = {m^2}}\end{array}} \right.\) . Khẳng định nào sau đây là đúng ?
Câu 3:
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + y = 6}\\{{y^2} + x = 6}\end{array}} \right.\)có bao nhiêu nghiệm ?
Câu 4:
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + {y^2} = 1}\\{y = x + m}\end{array}} \right.\) có đúng 1 nghiệm khi và chỉ khi :
Câu 5:
Nếu (x;y) là nghiệm của hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 4xy + {y^2} = 1}\\{y - 4xy = 2}\end{array}} \right.\) thì xy bằng bao nhiêu ?
Câu 6:
Hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{\left| {x - 1} \right| + y = 0}\\{2x - y = 5}\end{array}} \right.\) có nghiệm là ?
về câu hỏi!