Câu hỏi:
23/05/2022 535Nếu (x;y) là nghiệm của hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 4xy + {y^2} = 1}\\{y - 4xy = 2}\end{array}} \right.\) thì xy bằng bao nhiêu ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
- Trừ vế cho vế của phương trình (1) cho (2) ta được :\[{x^2} + {y^2} - y = - 1 \Leftrightarrow {x^2} + {y^2} - y + 1 = 0\]
- Ta có :\(\left\{ {\begin{array}{*{20}{c}}{{x^2} \ge 0,\forall x}\\{{y^2} - y + 1 = {{\left( {y - \frac{1}{2}} \right)}^2} + \frac{3}{4} >0,\forall y}\end{array} \Rightarrow {x^2} + {y^2} - y + 1 >0,\forall x,y} \right.\)
Do đó phương trình \[{x^2} + {y^2} - y + 1 = 0\]vô nghiệm.
Vậy không tồn tại giá trị của xy.
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi (x0;y0) là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\frac{3}{x} - \frac{6}{y} = 6}\\{\frac{2}{x} - \frac{1}{y} = - 2}\end{array}} \right.\)
Tìm \[{x_0} + {\rm{ }}{y_0}\]
Câu 2:
Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y = 4}\\{{x^2} + {y^2} = {m^2}}\end{array}} \right.\) . Khẳng định nào sau đây là đúng ?
Câu 3:
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + y = 6}\\{{y^2} + x = 6}\end{array}} \right.\)có bao nhiêu nghiệm ?
Câu 4:
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + {y^2} = 1}\\{y = x + m}\end{array}} \right.\) có đúng 1 nghiệm khi và chỉ khi :
Câu 5:
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x + \sqrt {y - 1} = 1}\\{2y + \sqrt {x - 1} = 1}\end{array}} \right.\) có bao nhiêu nghiệm (x;y) ?
Câu 6:
Hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{\left| {x - 1} \right| + y = 0}\\{2x - y = 5}\end{array}} \right.\) có nghiệm là ?
về câu hỏi!