Câu hỏi:
23/05/2022 547Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: \[{x^3} - 7{x^2} + 2({m^2} + 6m)x - 8 = 0.\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
+ Điều kiện cần: Giả sử phương trình đã cho có ba nghiệm phân biệt\[{x_1},{x_2},{x_3}\] lập thành một cấp số nhân.
Theo định lý Vi-ét, ta có \[{x_1}{x_2}{x_3} = 8.\]
Theo tính chất của cấp số nhân, ta có\[{x_1}{x_3} = x_2^2\] Suy ra ta có\[x_2^3 = 8 \Leftrightarrow {x_2} = 2.\]
+ Điều kiện đủ: Với m=1 và m=7 thì \[{m^2} + 6m = 7\] nên ta có phương trình\[{x^3} - 7{x^2} + 14x - 8 = 0.\]
Giải phương trình này, ta được các nghiệm là 1,2,4. Hiển nhiên ba nghiệm này lập thành một cấp số nhân với công bôị q=2.
Vậy, m=1 và m=−7 là các giá trị cần tìm. Do đó phương án D.
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm x để các số \[2;8;x;128\;\]theo thứ tự đó lập thành một cấp số nhân.
Câu 2:
Cho hai số x và y biết các số \[x - y;x + y;3x - 3y\] theo thứ tự lập thành cấp số cộng và các số \[x - 2;y + 2;2x + 3y\;\] theo thứ tự đó lập thành cấp số nhân. Tìm x;y
Câu 3:
Tính tổng \[{S_n} = 1 + 11 + 111 + ... + 11...11\] (có 10 chữ số 1)
Câu 4:
Tìm số hạng đầu và công bội của cấp số nhân \[({u_n})\;\]có công bội q>0 . Biết \[{u_2} = 4;{u_4} = 9\;\].
Câu 5:
Ba số dương lập thành cấp số nhân, tích của số hạng thứ nhất và số hạng thứ ba bằng 36. Một cấp số cộng có n số hạng, công sai d=4, tổng các số hạng bằng 510. Biết số hạng đầu của cấp số cộng bằng số hạng thứ 2 của cấp số nhân. Khi đó n bằng:
Câu 6:
Cho cấp số nhân\[\left( {{u_n}} \right)\]biết:\[{u_1} = - 2,{u_2} = 8\;\]. Lựa chọn đáp án đúng.
về câu hỏi!