Câu hỏi:

23/05/2022 547

Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: \[{x^3} - 7{x^2} + 2({m^2} + 6m)x - 8 = 0.\]

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+ Điều kiện cần: Giả sử phương trình đã cho có ba nghiệm phân biệt\[{x_1},{x_2},{x_3}\] lập thành một cấp số nhân.

Theo định lý Vi-ét, ta có \[{x_1}{x_2}{x_3} = 8.\]

Theo tính chất của cấp số nhân, ta có\[{x_1}{x_3} = x_2^2\] Suy ra ta có\[x_2^3 = 8 \Leftrightarrow {x_2} = 2.\]

+ Điều kiện đủ: Với m=1 và m=7 thì \[{m^2} + 6m = 7\] nên ta có phương trình\[{x^3} - 7{x^2} + 14x - 8 = 0.\]

Giải phương trình này, ta được các nghiệm là 1,2,4. Hiển nhiên ba nghiệm này lập thành một cấp số nhân với công bôị q=2.

Vậy, m=1 và m=−7 là các giá trị cần tìm. Do đó phương án D.

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm x để các số \[2;8;x;128\;\]theo thứ tự đó lập thành một cấp số nhân.

Xem đáp án » 23/05/2022 2,209

Câu 2:

Cho hai số x và y biết các số \[x - y;x + y;3x - 3y\] theo thứ tự lập thành cấp số cộng và các số \[x - 2;y + 2;2x + 3y\;\] theo thứ tự đó lập thành cấp số nhân. Tìm x;y

Xem đáp án » 23/05/2022 1,065

Câu 3:

Tính tổng \[{S_n} = 1 + 11 + 111 + ... + 11...11\] (có 10 chữ số 1)

Xem đáp án » 23/05/2022 684

Câu 4:

Tìm số hạng đầu và công bội của cấp số nhân \[({u_n})\;\]có công bội q>0 . Biết \[{u_2} = 4;{u_4} = 9\;\].

Xem đáp án » 23/05/2022 520

Câu 5:

Ba số dương lập thành cấp số nhân, tích của số hạng thứ nhất và số hạng thứ ba bằng 36. Một cấp số cộng có n số hạng, công sai d=4, tổng các số hạng bằng 510. Biết số hạng đầu của cấp số cộng bằng số hạng thứ 2 của cấp số nhân. Khi đó n bằng:

Xem đáp án » 23/05/2022 517

Câu 6:

Cho  cấp số nhân\[\left( {{u_n}} \right)\]biết:\[{u_1} = - 2,{u_2} = 8\;\]. Lựa chọn đáp án đúng.

Xem đáp án » 23/05/2022 441

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store