ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Cấp số nhân
216 người thi tuần này 4.6 2.1 K lượt thi 16 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Khoảng cách và góc
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Góc giữa đường thẳng và mặt phẳng
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Khoảng cách từ điểm đến mặt phẳng
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Hai đường thẳng song song
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Diện tích hình trụ, thể tích khối trụ
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Sử dụng phương pháp nguyên hàm từng phần để tìm nguyên hàm
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A.q=−4.
B.q=4.
C..q=−12.
D.q=10.
Lời giải
Vì \[\left( {{u_n}} \right)\]là cấp số nhân nên\[q = \frac{{{u_2}}}{{{u_1}}} = \frac{8}{{ - 2}} = - 4\]
Đáp án cần chọn là: A
Câu 2
A.\[{u_3} = 12.\,\,\,\,\]
B. \[{u_3} = - 12.\]
C. \[{u_3} = 16.\]
D. \[{u_3} = - 16.\]
Lời giải
Đáp án cần chọn là: A
Câu 3
A.\[{S_5} = - 512\]
B. \[{u_5} = 256\]
C. \[{u_5} = - 512\]
D. \[q = 4\]
Lời giải
Ta có:\[{u_1} = - 2,{u_2} = 8 \Rightarrow q = \frac{{{u_2}}}{{{u_1}}} = \frac{8}{{ - 2}} = - 4\]
Do đó\[{u_5} = {u_1}.{q^4} = - 2.{\left( { - 4} \right)^4} = - 512\]
Và\[{S_5} = \frac{{{u_1}\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{ - 2\left( {1 - {{\left( { - 4} \right)}^5}} \right)}}{{\left( {1 - \left( { - 4} \right)} \right)}} = - 410\]
Đáp án cần chọn là: C
Câu 4
A.số hạng thứ 103
B.số hạng thứ 104
C.số hạng thứ 105
D.Đáp án khác
Lời giải
Ta có:
\[{u_n} = {u_1}.{q^{n - 1}} \Leftrightarrow \frac{1}{{{{10}^{103}}}} = - 1.{\left( { - \frac{1}{{10}}} \right)^{n - 1}} \Leftrightarrow {\left( { - \frac{1}{{10}}} \right)^{n - 1}} = - \left( {\frac{1}{{{{10}^{103}}}}} \right) = {\left( { - \frac{1}{{10}}} \right)^{103}}\]
\[ \Leftrightarrow n - 1 = 103 \Leftrightarrow n = 104\]
Đáp án cần chọn là: B
Câu 5
A.\[{u_n} = {5^n}\]
B. \[{u_n} = {\left( {2 - \sqrt 3 } \right)^{n + 1}}\]
C. \[{u_n} = 5n + 1\]
D. \[{u_n} = {4^n}\]
Lời giải
Ta có\[{u_n} = {5^n}\] nên\[{u_{n + 1}} = {5^{n + 1}} \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{5^{n + 1}}}}{{{5^n}}} = 5\] không đổi\[\forall n \ge 1\]
Vậy dãy số\[\left( {{u_n}} \right)\] có \[{u_n} = {5^n}\] là cấp số nhân.
Tương tự ta cũng có dãy số ở đáp án D là cấp số nhân.
Ta có\[{u_n} = 2{( - \sqrt 3 )^{n + 1}}\] nên\[{u_{n + 1}} = 2{( - \sqrt 3 )^{n + 2}} = ( - \sqrt 3 ){u_n} \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = ( - \sqrt 3 )\] không đổi\[\forall n \ge 1\]
Vậy dãy số \[\left( {{u_n}} \right)\] có\[{u_n} = 2{( - \sqrt 3 )^{n + 1}}\] là cấp số nhân.
Ta có \[{u_n} = 5n + 1\] nên\[{u_1} = 8;{u_2} = 13;{u_3} = 18 \Rightarrow \frac{{{u_2}}}{{{u_1}}} \ne \frac{{{u_3}}}{{{u_2}}}\]Vậy dãy số \[\left( {{u_n}} \right)\]không là cấp số nhân.
Đáp án cần chọn là: C
Câu 6
A.\[{u_1} = - \frac{8}{3};q = \frac{3}{2}\]
B. \[{u_1} = \frac{8}{3};q = \frac{3}{2}\]
C. \[{u_1} = - \frac{5}{3};q = \frac{3}{2}\]
D. \[{u_1} = \frac{5}{3};q = \frac{3}{2}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A.\[x = 3;y = 1\]
B.\[x = 3;y = 1\] hoặc \[x = - \frac{{16}}{{13}};y = - \frac{2}{3}\]
C.\[x = 3;y = 1\]hoặc \[x = \frac{{ - 6}}{{13}};y = - \frac{2}{{13}}\]
D.\[x = 3;y = 1\]hoặc \[x = - \frac{{16}}{3};y = \frac{2}{3}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A.3183624
B.2343625
C.2343626
D.2343627
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A.\[\frac{{{{10}^{11}} - 100}}{{81}}\]
B. \[\frac{{{{10}^{10}} - 100}}{{81}}\]
C. \[\frac{{{{10}^9} - 100}}{{81}}\]
D. \[\frac{{{{10}^8} - 100}}{{81}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
A.\[\frac{{\left( {n + 1} \right){a^{n + 2}} - (n + 2){a^{n + 1}} + 1}}{{{{\left( {1 - a} \right)}^2}}}\]
B. \[\frac{{\left( {n + 1} \right){a^{n + 2}} + (n + 2){a^{n + 1}} + 1}}{{{{\left( {1 - a} \right)}^2}}}\]
C. \[\frac{{\left( {n + 1} \right){a^{n + 2}} - (n + 2){a^{n + 1}} - 1}}{{{{\left( {1 - a} \right)}^2}}}\]
D. \[\frac{{\left( {n + 1} \right){a^{n + 2}} + (n + 2){a^{n + 1}} - 1}}{{{{\left( {1 - a} \right)}^2}}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
A.\[{S_{10}} = - 511.\]
B. \[{S_{10}} = - 1025.\]
C. \[{S_{10}} = 1025.\]
D. \[{S_{10}} = 1023.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
A.\[m = - 7.\]
B. \[m = 1.\]
C. \[m = - 1\] hoặc\[m = 7.\]
D. \[m = 1\] hoặc\[m = - 7.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
A.\[x = 14.\]
B. \[x = 32.\]
C. \[x = 64.\]
D. \[x = 68.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.