Câu hỏi:

23/05/2022 309

Cho cấp số cộng \[\left( {{u_n}} \right)\]với công sai khác 0. Biết rằng các số \[{u_1}{u_2};{u_2}{u_3};{u_1}{u_3}\;\] theo thứ tự đó lập thành cấp số nhân với công bội \[q \ne 0\]. Khi đó q bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì cấp số cộng\[\left( {{u_n}} \right)\] có công sai khác 0 nên các số\[{u_1};{u_2};{u_3};{u_4}\] đôi một khác nhau.

Suy ra \[{u_1}{u_2} \ne 0\] và\[q \ne 1\]

Ta có

\[{u_2}{u_3} = {u_1}{u_2}.q;{u_1}{u_3} = {u_1}{u_2}.{q^2} \Leftrightarrow {u_3} = {u_1}.q = {u_2}.{q^2}\]

\[ \Rightarrow {u_3} = {u_2}.{q^2};{u_1} = {u_2}.q\]

Vì\[{u_1};{u_2};{u_3}\] là cấp số cộng nên\[{u_1} + {u_3} = 2{u_2}\]

Thay\[{u_3} = {u_2}.{q^2};{u_1} = {u_2}.q\] vào ta được:

\[{u_1} + {u_3} = 2{u_2} \Rightarrow {u_2}.q + {u_2}.{q^2} = 2{u_2} \Rightarrow {q^2} + q - 2 = 0 \Rightarrow q = - 2\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cấp số nhân\[2;\,8;\,x;\,128\] theo thứ tự đó sẽ là\[{u_1};\,\,{u_2};\,\,{u_3};\,\,{u_4}\]ta có

\(\left\{ {\begin{array}{*{20}{c}}{\frac{{{u_2}}}{{{u_1}}} = \frac{{{u_3}}}{{{u_2}}}}\\{\frac{{{u_3}}}{{{u_2}}} = \frac{{{u_4}}}{{{u_3}}}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{8}{2} = \frac{x}{8}}\\{\frac{{128}}{x} = \frac{x}{8}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 32}\\{{x^2} = 1024}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 32}\\{\left[ {\begin{array}{*{20}{c}}{x = 32}\\{x = - 32}\end{array}} \right.}\end{array}} \right. \Leftrightarrow x = 32\)

Chọn B

Đáp án cần chọn là: B

Câu 2

Lời giải

Từ giả thiết ta có:

\(\left\{ {\begin{array}{*{20}{c}}{(x - y) + (3x - 3y) = 2(x + y)}\\{{{(y + 2)}^2} = (x - 2)(2x + 3y)}\end{array}} \right.\)

\(\begin{array}{l}\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 3y}\\{{{(y + 2)}^2} = (3y - 2)(9y)}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 3y}\\{13{y^2} - 11y - 2 = 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 3y}\\{\left[ {\begin{array}{*{20}{c}}{y = 1}\\{y = - \frac{2}{{13}}}\end{array}} \right.}\end{array}} \right.\end{array}\)

Vậy  \[x = 3;y = 1\] hoặc\[x = - \frac{6}{{13}};y = - \frac{2}{{13}}\]

Đáp án cần chọn là: C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP