Câu hỏi:

25/05/2022 242

Tính \[\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 3} - x} \right)\]bằng?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1:

\[\begin{array}{*{20}{l}}{\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 3} - x} \right)}\\{ = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {\sqrt {{x^2} + x + 3} - x} \right)\left( {\sqrt {{x^2} + x + 3} + x} \right)}}{{\left( {\sqrt {{x^2} + x + 3} + x} \right)}}}\\{ = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + x + 3 - {x^2}}}{{\sqrt {{x^2} + x + 3} + x}}}\\{ = \mathop {\lim }\limits_{x \to + \infty } \frac{{x + 3}}{{\sqrt {{x^2} + x + 3} + x}}}\end{array}\]

Bước 2:

\[ = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 + \frac{3}{x}}}{{\sqrt {1 + \frac{1}{x} + \frac{3}{{{x^2}}}} + 1}}\]

Bước 3:

\[ = \frac{{1 + 0}}{{\sqrt {1 + 0 + 0} + 1}} = \frac{1}{2}\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho biết \[\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = 2\].Tính  \[L = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt {f\left( x \right) + 2} - f\left( x \right)}}{{f\left( x \right) - 2}}\]

Xem đáp án » 13/07/2024 1,336

Câu 2:

Cho a,b là các số nguyên và \[\mathop {\lim }\limits_{x \to 1} \frac{{a{x^2} + bx - 5}}{{x - 1}} = 20\]. Tính \[P = {a^2} + {b^2} - a - b\]

Xem đáp án » 25/05/2022 397

Câu 3:

Tính \[\mathop {\lim }\limits_{x \to - \infty } x\sqrt {\frac{{3x + 2}}{{2{x^3} + {x^2} - 1}}} \] bằng?

Xem đáp án » 25/05/2022 374

Câu 4:

Tính \[\mathop {\lim }\limits_{x \to - 1} \left( {{x^2} - x + 7} \right)\]bằng?

Xem đáp án » 25/05/2022 342

Câu 5:

Tính \[\mathop {\lim }\limits_{x \to - \infty } \frac{{3{x^2} - 2x - 1}}{{{x^2} + 1}}\] bằng?

Xem đáp án » 25/05/2022 336

Câu 6:

Tính\[\mathop {\lim }\limits_{x \to - \infty } (x - 1)\sqrt {\frac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} \] bằng?

Xem đáp án » 25/05/2022 334

Câu 7:

Tính \[\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 4x + 3}}{{{x^2} - 9}}\]bằng?

Xem đáp án » 25/05/2022 317

Bình luận


Bình luận