Tính \[\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}}{x}\]
A.\[\frac{{23}}{2}\]
B. 24
C. \[\frac{3}{2}\]
D. 3
Quảng cáo
Trả lời:

Ta có:
\[\begin{array}{*{20}{l}}{\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}\\{ = \sqrt {1 + 2x} - \sqrt {1 + 2x} + \sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}} - \sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}} + \sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}\\{ = \left( {\sqrt {1 + 2x} - 1} \right) + \sqrt {1 + 2x} \left( {\sqrt[3]{{1 + 3x}} - 1} \right) + \sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\left( {\sqrt[4]{{1 + 4x}} - 1} \right)}\end{array}\]
\[\begin{array}{*{20}{l}}{ \Rightarrow \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}}{x}}\\{ = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sqrt {1 + 2x} - 1}}{x}} \right) + \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\frac{{\sqrt[3]{{1 + 3x}} - 1}}{x}} \right) + \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\frac{{\sqrt[4]{{1 + 4x}} - 1}}{x}} \right)}\end{array}\]
Tính:
\[\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sqrt {1 + 2x} - 1}}{x}} \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {1 + 2x} - 1} \right)\left( {\sqrt {1 + 2x} + 1} \right)}}{{x\left( {\sqrt {1 + 2x} + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{{2x}}{{x\left( {\sqrt {1 + 2x} + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{2}{{\sqrt {1 + 2x} + 1}} = \frac{2}{{1 + 1}} = 1\]\[\begin{array}{l}\mathop {lim}\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\frac{{\sqrt[3]{{1 + 3x}} - 1}}{x}} \right)\\ = \mathop {lim}\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\frac{{\left( {\sqrt[3]{{1 + 3x}} - 1} \right)\left[ {{{\left( {\sqrt[3]{{1 + 3x}}} \right)}^2} + \sqrt[3]{{1 + 3x}} + 1} \right]}}{{x.\left[ {{{\left( {\sqrt[3]{{1 + 3x}}} \right)}^2} + \sqrt[3]{{1 + 3x}} + 1} \right]}}} \right)\\ = \mathop {lim}\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\frac{{3x}}{{x.\left[ {{{\left( {\sqrt[3]{{1 + 3x}}} \right)}^2} + \sqrt[3]{{1 + 3x}} + 1} \right]}}} \right)\\ = \mathop {lim}\limits_{x \to 0} \left( {\frac{{3\sqrt {1 + 2x} }}{{\left[ {{{\left( {\sqrt[3]{{1 + 3x}}} \right)}^2} + \sqrt[3]{{1 + 3x}} + 1} \right]}}} \right) = \frac{{3.1}}{{1 + 1 + 1}} = 3\end{array}\]
\[\mathop {lim}\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\frac{{\sqrt[4]{{1 + 4x}} - 1}}{x}} \right)\]
\[ = \mathop {lim}\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\frac{{\left( {\sqrt[4]{{1 + 4x}} - 1} \right)\left[ {{{\left( {\sqrt[4]{{1 + 4x}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4x}}} \right)}^2} + \sqrt[4]{{1 + 4x}} + 1} \right]}}{{x.\left[ {{{\left( {\sqrt[4]{{1 + 4x}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4x}}} \right)}^2} + \sqrt[4]{{1 + 4x}} + 1} \right]}}} \right)\]
\[ = \mathop {lim}\limits_{x \to 0} \left( {\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\frac{{4x}}{{\frac{{\left( {\sqrt[4]{{1 + 4x}} - 1} \right)\left[ {{{\left( {\sqrt[4]{{1 + 4x}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4x}}} \right)}^2} + \sqrt[4]{{1 + 4x}} + 1} \right]}}{{x.\left[ {{{\left( {\sqrt[4]{{1 + 4x}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4x}}} \right)}^2} + \sqrt[4]{{1 + 4x}} + 1} \right]}}}}} \right)\]
\[ = \mathop {lim}\limits_{x \to 0} \frac{{4\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}}}{{\left[ {{{\left( {\sqrt[4]{{1 + 4x}}} \right)}^3} + {{\left( {\sqrt[4]{{1 + 4x}}} \right)}^2} + \sqrt[4]{{1 + 4x}} + 1} \right]}} = \frac{{4.1.1}}{{1 + 1 + 1 + 1}} = 1\]
Vậy\[\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}}{x} = 1 + 1 + 1 = 3\]
Đáp án cần chọn là: D
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\[\begin{array}{*{20}{l}}{L = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt {f\left( x \right) + 2} - f\left( x \right)}}{{f\left( x \right) - 2}}}\\{\,\,\,\,\, = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) + 2 - {f^2}\left( x \right)}}{{f\left( x \right) - 2}}.\frac{1}{{\sqrt {f\left( x \right) + 2} + f\left( x \right)}}}\\{\,\,\,\,\, = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left[ {f\left( x \right) + 1} \right]\left[ {f\left( x \right) - 2} \right]}}{{f\left( x \right) - 2}}.\frac{1}{{\sqrt {f\left( x \right) + 2} + f\left( x \right)}}}\\{\,\,\,\,\, = - \frac{3}{4}}\end{array}\]
Câu 2
A.−1
B.0
C.\(\frac{1}{2}\)
D.1
Lời giải
\[\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 1} + x - 1} \right)\]
\[ = \mathop {\lim }\limits_{x \to - \infty } \frac{{(\sqrt {{x^2} + 1} + x - 1)(\sqrt {{x^2} + 1} - x + 1)}}{{\sqrt {{x^2} + 1} - x + 1}}\]
\[\begin{array}{l} = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 1 - {{(x - 1)}^2}}}{{\sqrt {{x^2} + 1} - x + 1}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 1 - {x^2} + 2x - 1}}{{\sqrt {{x^2} + 1} - x + 1}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x}}{{\sqrt {{x^2} + 1} - x + 1}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{{2x}}{x}}}{{\frac{{\sqrt {{x^2} + 1} }}{x} - \frac{x}{x} + \frac{1}{x}}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{2}{{ - \sqrt {1 + \frac{1}{{{x^2}}}} - 1 + \frac{1}{x}}}\\ = \frac{2}{{ - 1 - 1 + 0}} = - 1\end{array}\]
Đáp án cần chọn là: A
Câu 3
A.\[ - \frac{{\sqrt 2 }}{2}\]
B. \[\frac{{\sqrt 2 }}{2}.\]
C. \(\frac{1}{2}\)
D. \( - \frac{1}{2}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\[ - \sqrt {\frac{3}{2}.} \]
B. \[\sqrt {\frac{3}{2}} .\]
C. \[\frac{3}{2}.\]
D. \[ - \frac{3}{2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.5
B.7
C.9
D.6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.