Câu hỏi:

13/07/2024 419 Lưu

Cho hàm số f(x) xác định trên \(\mathbb{R}\) thỏa mãn\[\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 16}}{{x - 2}} = 12\]. Giới hạn \[\mathop {lim}\limits_{x \to 2} \frac{{\sqrt {2f(x) - 16} - 4}}{{{x^2} + x - 6}}\] bằng \(\frac{a}{b}\)(phân số tối giản). Tổng \[{a^2} + {b^2}\;\]bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1: Tính\[\mathop {\lim }\limits_{x \to 2} f\left( x \right)\]

Đặt\[g\left( x \right) = \frac{{f\left( x \right) - 16}}{{x - 2}}\]ta có:\[f\left( x \right) = \left( {x - 2} \right)g\left( x \right) + 16\]

\[ \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \left[ {\left( {x - 2} \right)g\left( x \right) + 16} \right] = 16\]

Bước 2:

Ta có:

\[\begin{array}{l}\mathop {lim}\limits_{x \to 2} \frac{{\sqrt {2f(x) - 16} - 4}}{{{x^2} + x - 6}}\\ = \mathop {lim}\limits_{x \to 2} \frac{{2f(x) - 16 - 16}}{{({x^2} + x - 6)\left( {\sqrt {2f(x) - 16} + 4} \right)}}\\ = \mathop {lim}\limits_{x \to 2} \frac{{2f(x) - 32}}{{(x - 2)(x + 3)\left( {\sqrt {2f(x) - 16} + 4} \right)}}\\ = \mathop {lim}\limits_{x \to 2} \frac{{f(x) - 16}}{{x - 2}}.\mathop {lim}\limits_{x \to 2} \frac{2}{{(x + 3)\left( {\sqrt {2f(x) - 16} + 4} \right)}}\\ = 12.\frac{2}{{5.\left( {\sqrt {2.16 - 16} + 4} \right)}} = \frac{3}{5}\end{array}\]

\[\begin{array}{l} = >{\rm{ }}a = 3;{\rm{ }}b = 5\\ \Rightarrow {a^2} + {b^2} = 34\end{array}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[\begin{array}{*{20}{l}}{L = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt {f\left( x \right) + 2} - f\left( x \right)}}{{f\left( x \right) - 2}}}\\{\,\,\,\,\, = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) + 2 - {f^2}\left( x \right)}}{{f\left( x \right) - 2}}.\frac{1}{{\sqrt {f\left( x \right) + 2} + f\left( x \right)}}}\\{\,\,\,\,\, = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left[ {f\left( x \right) + 1} \right]\left[ {f\left( x \right) - 2} \right]}}{{f\left( x \right) - 2}}.\frac{1}{{\sqrt {f\left( x \right) + 2} + f\left( x \right)}}}\\{\,\,\,\,\, = - \frac{3}{4}}\end{array}\]

Lời giải

Bước 1:

\[\begin{array}{*{20}{l}}{a{x^2} + bx - 5}\\{ = (ax + a + b)(x - 1) + a + b - 5}\end{array}\]

Bước 2:

\[\begin{array}{l}\mathop {lim}\limits_{x \to 1} \frac{{a{x^2} + bx - 5}}{{x - 1}}\\ = \mathop {lim}\limits_{x \to 1} (ax + a + b + \frac{{a + b - 5}}{{x - 1}}) = 20\end{array}\]

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a.1 + b + a = 20}\\{a + b - 5 = 0}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 15}\\{6 = - 10}\end{array}} \right.\)

\[ \Rightarrow P = {a^2} + {b^2} - a - b = 320\]

Đáp án cần chọn là: C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP