Câu hỏi:
25/05/2022 371Tính \[\mathop {\lim }\limits_{x \to - \infty } x\sqrt {\frac{{3x + 2}}{{2{x^3} + {x^2} - 1}}} \] bằng?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).
Quảng cáo
Trả lời:
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho biết \[\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = 2\].Tính \[L = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt {f\left( x \right) + 2} - f\left( x \right)}}{{f\left( x \right) - 2}}\]
Câu 2:
Cho a,b là các số nguyên và \[\mathop {\lim }\limits_{x \to 1} \frac{{a{x^2} + bx - 5}}{{x - 1}} = 20\]. Tính \[P = {a^2} + {b^2} - a - b\]
Câu 3:
Tính \[\mathop {\lim }\limits_{x \to - 1} \left( {{x^2} - x + 7} \right)\]bằng?
Câu 4:
Tính \[\mathop {\lim }\limits_{x \to - \infty } \frac{{3{x^2} - 2x - 1}}{{{x^2} + 1}}\] bằng?
Câu 5:
Tính\[\mathop {\lim }\limits_{x \to - \infty } (x - 1)\sqrt {\frac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} \] bằng?
Câu 6:
Tính \[\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 4x + 3}}{{{x^2} - 9}}\]bằng?
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Khoa học tự nhiên - Định luật khúc xạ ánh sáng
về câu hỏi!