Câu hỏi:

25/05/2022 2,555 Lưu

Gieo một đồng xu 5 lần liên tiếp. Số phần tử của không gian mẫu là:

A.10    

B.16

C.32

D.64

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Kết quả của 5 lần gieo là dãy abcde, trong đó a,b,c,d,e nhận một trong hai giá trị S,N. Do đó số phần tử của không gian mẫu là \[2.2.2.2.2 = 32\].

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\[P\left( A \right) = 1 + P\left( {\bar A} \right)\]

B. \[P\left( A \right) = 1 - P\left( {\bar A} \right)\]

C. \[P\left( A \right) = P\left( {\bar A} \right)\]

D. \[P\left( A \right) + P\left( {\bar A} \right) = 0\]

Lời giải

Nếu A và \(\overline A \) là hai biến cố đối nhau thì\[P\left( {\bar A} \right) + P\left( A \right) = 1 \Leftrightarrow P\left( A \right) = 1 - P\left( {\bar A} \right)\]

Đáp án cần chọn là: B

Lời giải

Ta có:\[n({\rm{\Omega }}) = 6.6 = 36\]

Gọi A:”tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7”.

\[A = \{ (1;6);(2;5);(3;4);(4;3);(5;2);(6;1)\} \]

Do đó \[n(A) = 6\]

Vậy\[P(A) = \frac{6}{{36}} = \frac{1}{6}\]

Đáp án cần chọn là: B

Câu 3

A.\[P\left( A \right) = \frac{{C_{480}^2 + C_{240}^2}}{{C_{720}^2}}\]

B. \[P\left( A \right) = \frac{{C_{400}^2 + C_{320}^2}}{{C_{720}^2}}\]

C. \[P\left( A \right) = \frac{{C_{300}^2 + C_{420}^2}}{{C_{720}^2}}\]

D. \[P\left( A \right) = 1 - \frac{{C_{300}^2 + C_{420}^2}}{{C_{720}^2}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP