Câu hỏi:
25/05/2022 279Chọn ngẫu nhiên một số tự nhiên trong các số tự nhiên có bốn chữ số. Tính xác xuất để số được chọn có ít nhất hai chữ số 8 đứng liền nhau.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
* Gọi số tự nhiên có 4 chữ số là\[\overline {abcd} \,\left( {a \ne 0;\,0 \le a,b,c,d \le 9;\,a,b,c,d \in \mathbb{N}} \right)\]
+ a có 9 cách chọn
+ b,c,d có 10 cách chọn
Không gian mẫu có số phần tử là \[n\left( {\rm{\Omega }} \right) = {9.10^3}\]
* Gọi A là biến cố số được chọn có ít nhất hai chữ số 8 đứng liền nhau
TH1 : Có hai chữ số 8 đứng liền nhau. Ta chọn 2 chữ số còn lại trong \[\overline {abcd} \]
+ 2 chữ số 8 đứng đầu thì có \[9.10 = 90\;\]cách chọn 2 chữ số còn lại
+ 2 chữ số 8 đứng ở giữa thì có 8 cách chọn chữ số hàng nghìn và 9 cách chọn chữ số hàng đơn vị nên có \[8.9 = 72\;\]cách chọn.
+ 2 chữ số 8 đứng ở cuối thì có 9 cách chọn chữ số hàng nghìn và 9 cách chọn chữ số hàng trăm nên có 9.9 cách chọn.
Vậy trường hợp này có \[90 + 72 + 81 = 243\]số.
TH2 : Có ba chữ số 8 đứng liền nhau.
+ 3 chữ số 8 đứng đầu thì có 9 cách chọn chữ số hàng đơn vị
+ 3 chữ số 8 đứng cuối thì có 8 cách chọn chữ số hàng nghìn
Vậy trường hợp này có 9+8=17 số
TH3 : Có 4 chữ số 8 đứng liền nhau thì có 1 số
Số phần tử của biến cố A là \[n\left( A \right) = 243 + 17 + 1 = 261\]
Xác suất cần tìm là\[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{261}}{{{{9.10}^3}}} = 0,029\]Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho A và \(\overline A \)là hai biến cố đối nhau. Chọn câu đúng:
Câu 2:
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp \[\left\{ {1,2,3,4,5,6,7} \right\}\]Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng
Câu 3:
Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7 là:
Câu 4:
Cho các chữ số 0,1,2,3,4,5,6. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số đã cho. Lấy ngẫu nhiên 2 số từ S, gọi A là biến cố: “tổng hai số lấy được là một số chẵn”. Xác suất của biến cố A là:
Câu 5:
Xếp 1 học sinh lớp A, 2 học sinh lớp B, 5 học sinh lớp C thành một hàng ngang. Tính xác suất sao cho học sinh lớp A chỉ đứng cạnh học sinh lớp B.
Câu 6:
Trường trung học phổ thông A có 23 lớp, trong đó khối 10 có 8 lớp, khối 11 có 8 lớp và khối 12 có 7 lớp, mỗi lớp có một chi đoàn, mỗi chi đoàn có một em làm bí thư. Các em bí thư đều giỏi và rất năng động nên Ban chấp hành Đoàn trường chọn ngẫu nhiên 9 em bí thư đi thi cán bộ đoàn giỏi cấp tỉnh. Tính xác suất để 9 em được chọn có đủ 3 khối.
Câu 7:
Có 6 học sinh gồm 2 học sinh lớp A, 2 học sinh lớp B và 2 học sinh lớp C xếp ngẫu nhiên thành một hàng ngang. Tính xác suất để nhóm bất kì 3 học sinh liền kề nhau trong hàng luôn có mặt học sinh của ba lớp A, B, C
về câu hỏi!