Câu hỏi:
25/05/2022 358Một người chơi trò gieo súc sắc. Mỗi ván gieo đồng thời ba con súc sắc. Người chơi thắng cuộc nếu xuất hiện ít nhất 2 mặt sáu chấm. Tính xác suất để trong ba ván, người đó thắng ít nhất hai ván
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
- Tính xác suất để người đó gieo súc sắc thắng trong 1 ván (nghĩa là gieo được ít nhất 2 mặt 6 chấm).
Số phần tử của không gian mẫu\[n\left( {\rm{\Omega }} \right) = {6^3} = 216\]
Gọi A là biến cố: “Gieo được ít nhất 2 mặt 6 chấm”
Số cách gieo được hai mặt 6 chấm là\[C_3^2.1.1.5 = 15\]cách
Số cách gieo được ba mặt 6 chấm là: 1 cách
Số cách gieo được ít nhất 2 mặt 6 chấm là: \[n\left( A \right) = 15 + 1 = 16\] cách
Xác suất để người đó gieo thắng 1 ván là: \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{16}}{{216}} = \frac{2}{{27}}\]
Do đó xác suất để thua 1 ván là\[1 - P\left( A \right) = 1 - \frac{2}{{27}} = \frac{{25}}{{27}}\]
- Tính xác suất để người đó thắng ít nhất 2 ván.
TH1: Thắng 2 ván, thua 1 ván
Xác suất để người đó thắng 2 ván thua 1 ván là\[C_3^2.\frac{2}{{27}}.\frac{2}{{27}}.\frac{{25}}{{27}} = \frac{{100}}{{6561}}\]
Xác suất để người đó thắng cả 3 ván là:\[{\left( {\frac{2}{{27}}} \right)^3} = \frac{8}{{19683}}\]
Theo quy tắc cộng xác suất ta có: Xác suất để người đó thắng ít nhất 2 ván là:
\[P = \frac{{100}}{{6561}} + \frac{8}{{19683}} = \frac{{308}}{{19683}}\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho A và \(\overline A \)là hai biến cố đối nhau. Chọn câu đúng:
Câu 2:
Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7 là:
Câu 3:
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp \[\left\{ {1,2,3,4,5,6,7} \right\}\]Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng
Câu 4:
Cho các chữ số 0,1,2,3,4,5,6. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số đã cho. Lấy ngẫu nhiên 2 số từ S, gọi A là biến cố: “tổng hai số lấy được là một số chẵn”. Xác suất của biến cố A là:
Câu 5:
Xếp 1 học sinh lớp A, 2 học sinh lớp B, 5 học sinh lớp C thành một hàng ngang. Tính xác suất sao cho học sinh lớp A chỉ đứng cạnh học sinh lớp B.
Câu 6:
Trường trung học phổ thông A có 23 lớp, trong đó khối 10 có 8 lớp, khối 11 có 8 lớp và khối 12 có 7 lớp, mỗi lớp có một chi đoàn, mỗi chi đoàn có một em làm bí thư. Các em bí thư đều giỏi và rất năng động nên Ban chấp hành Đoàn trường chọn ngẫu nhiên 9 em bí thư đi thi cán bộ đoàn giỏi cấp tỉnh. Tính xác suất để 9 em được chọn có đủ 3 khối.
Câu 7:
Có 6 học sinh gồm 2 học sinh lớp A, 2 học sinh lớp B và 2 học sinh lớp C xếp ngẫu nhiên thành một hàng ngang. Tính xác suất để nhóm bất kì 3 học sinh liền kề nhau trong hàng luôn có mặt học sinh của ba lớp A, B, C
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
về câu hỏi!