Câu hỏi:

25/05/2022 1,772

Có 6 học sinh gồm 2 học sinh lớp A, 2 học sinh lớp B và 2 học sinh lớp C xếp ngẫu nhiên thành một hàng ngang. Tính xác suất để nhóm bất kì 3 học sinh liền kề nhau trong hàng luôn có mặt học sinh của ba lớp A, B, C

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số phần tử của không gian mẫu:\[n\left( {\rm{\Omega }} \right) = 6!\]

Bước 1: Xếp 3 học sinh đứng đầu hàng

+) Chọn 3 học sinh lớp A, B, C để đứng đầu hàng. Mỗi lớp 1 học sinh: Có\[{(C_2^1)^3}\]cách chọn.

+) Với mỗi cách chọn trên ta sắp xếp thứ tự 3 học sinh này: Có 3! cách xếp.

Theo quy tắc nhân có 48 cách xếp 3 học sinh A,B,C đứng đầu hàng.

Bước 2: Với mỗi một cách xếp 3 học sinh ở 2 bước trên (Giả sử thứ tự khi xếp 3 học sinh ở bước 2 là ABC),

+) Ta chọn 1 học sinh trong 3 học sinh còn lại xếp vị trí thứ 4

=>Chỉ có thể là học sinh lớp A: ABCA

+) Ta chọn học sinh xếp vào vị trí thứ 5: Chỉ có thể là B

+) Ta chọn học sinh xếp vào vị trí thứ 6: Chỉ có thể là C

Số phần tử của A là\[n\left( A \right) = {(C_2^1)^3}.3! = 48 \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{48}}{{6!}} = \frac{1}{{15}}\]

Đáp án cần chọn là: D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho A và \(\overline A \)là hai biến cố đối nhau. Chọn câu đúng:

Lời giải

Nếu A và \(\overline A \) là hai biến cố đối nhau thì\[P\left( {\bar A} \right) + P\left( A \right) = 1 \Leftrightarrow P\left( A \right) = 1 - P\left( {\bar A} \right)\]

Đáp án cần chọn là: B

Lời giải

Ta có:\[n({\rm{\Omega }}) = 6.6 = 36\]

Gọi A:”tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7”.

\[A = \{ (1;6);(2;5);(3;4);(4;3);(5;2);(6;1)\} \]

Do đó \[n(A) = 6\]

Vậy\[P(A) = \frac{6}{{36}} = \frac{1}{6}\]

Đáp án cần chọn là: B

Câu 3

Cho các chữ số 0,1,2,3,4,5,6. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số đã cho. Lấy ngẫu nhiên 2 số từ S, gọi A là biến cố: “tổng hai số lấy được là một số chẵn”. Xác suất của biến cố A là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay