Câu hỏi:

25/05/2022 575

Có 60 quả cầu được đánh số từ 1 đến 60. Lấy ngẫu nhiên đồng thời hai quả cầu rồi nhân các số trên hai quả cầu với nhau. Tính xác suất để tích nhận được là số chia hết cho 10.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số cách lấy ngẫu nhiên hai quả cầu trong số 60 quả cầu đã cho là:\[C_{60}^2\] cách lấy.

Gọi biến cố A: “Lấy được hai quả cầu mà tích hai số trên hai quả cầu chia hết cho 10”.

TH1: Hai quả cầu lấy được có đúng một quả mang số chia hết cho 10

⇒ Có\[C_6^1.C_{54}^1\] cách lấy.

TH2: Hai quả cầu lấy dược đều là số chia hết cho 10

⇒ Có \[C_6^2\] cách lấy.

TH3: Hai quả cầu lấy được có 1 quả cầu là số chia hết cho 2 (nhưng không chia hết cho 5) và 1 quả cầu mang số chia hết cho 5 (nhưng không chia hết cho 2)

⇒ Có\[\left( {30 - 6} \right)\left( {12 - 6} \right) = 24.6 = 144\] cách lấy.

\[ \Rightarrow {n_A} = C_6^1.C_{54}^1 + C_6^2 + 144 = 483\] cách lấy.

\[ \Rightarrow P\left( A \right) = \frac{{483}}{{C_{60}^2}} = \frac{{161}}{{590}}.\]

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Nếu A và \(\overline A \) là hai biến cố đối nhau thì\[P\left( {\bar A} \right) + P\left( A \right) = 1 \Leftrightarrow P\left( A \right) = 1 - P\left( {\bar A} \right)\]

Đáp án cần chọn là: B

Lời giải

Ta có:\[n({\rm{\Omega }}) = 6.6 = 36\]

Gọi A:”tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7”.

\[A = \{ (1;6);(2;5);(3;4);(4;3);(5;2);(6;1)\} \]

Do đó \[n(A) = 6\]

Vậy\[P(A) = \frac{6}{{36}} = \frac{1}{6}\]

Đáp án cần chọn là: B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP