Câu hỏi:
25/05/2022 470Có 8 quyển sách Địa lí, 12 quyển sách Lịch sử, 10 quyển sách Giáo dục công dân (các quyển sách cùng một môn thì giống nhau) được chia thành 15 phần quà, mỗi phần gồm 2 quyển khác loại. Lấy ngẫu nhiên 2 phần quà từ 15 phần quà. Xác suất để hai phần quà lấy được khác nhau là:
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi số phần quà Sử - Địa là xx, số phần quà Sử - GDCD là yy và số phần quà Địa – GDCD là zz
Tổng số phần quà là 15 nên x+y+z=15.
Phần quà có môn sử chỉ có 2 kiểu: Sử- Địa (x phần quà) và Sử - GDCD(y phần quà). Do có 12 quyển sách sử nên 12 quyển này nằm hoàn toàn trong 2 kiểu phần quà trên. Do đó, x+y=12.
Tương tự với Địa: x+z=8.
GDCD: y+z=10
\(\left\{ {\begin{array}{*{20}{c}}{x + y + z = 15}\\{x + y = 12}\\{y + z = 10}\\{x + z = 8}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 5}\\{y = 7}\\{z = 3}\end{array}} \right.\)
Suy ra số phần qùa Sử - Địa là 5.
Số phần quà Sử - GDCD là 7.
Số phần quà Địa – GDCD là 3.
Chọn 2 trong 15 phần quà ⇒ Không gian mẫu\[n\left( {\rm{\Omega }} \right) = C_{15}^2 = 105\]
Gọi A là biến cố: “hai phần quà lấy được khác nhau”, khi đó ta có:
\[n\left( A \right) = C_5^1.C_7^1 + C_7^1.C_3^1 + C_3^1.C_5^1 = 71\]
Vậy\[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{71}}{{105}}\]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho A và \(\overline A \)là hai biến cố đối nhau. Chọn câu đúng:
Câu 2:
Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7 là:
Câu 3:
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp \[\left\{ {1,2,3,4,5,6,7} \right\}\]Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng
Câu 4:
Cho các chữ số 0,1,2,3,4,5,6. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số đã cho. Lấy ngẫu nhiên 2 số từ S, gọi A là biến cố: “tổng hai số lấy được là một số chẵn”. Xác suất của biến cố A là:
Câu 5:
Xếp 1 học sinh lớp A, 2 học sinh lớp B, 5 học sinh lớp C thành một hàng ngang. Tính xác suất sao cho học sinh lớp A chỉ đứng cạnh học sinh lớp B.
Câu 6:
Trường trung học phổ thông A có 23 lớp, trong đó khối 10 có 8 lớp, khối 11 có 8 lớp và khối 12 có 7 lớp, mỗi lớp có một chi đoàn, mỗi chi đoàn có một em làm bí thư. Các em bí thư đều giỏi và rất năng động nên Ban chấp hành Đoàn trường chọn ngẫu nhiên 9 em bí thư đi thi cán bộ đoàn giỏi cấp tỉnh. Tính xác suất để 9 em được chọn có đủ 3 khối.
Câu 7:
Có 6 học sinh gồm 2 học sinh lớp A, 2 học sinh lớp B và 2 học sinh lớp C xếp ngẫu nhiên thành một hàng ngang. Tính xác suất để nhóm bất kì 3 học sinh liền kề nhau trong hàng luôn có mặt học sinh của ba lớp A, B, C
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!