Câu hỏi:
25/06/2022 3,653Cho tứ diện ABCD. Gọi M,N,P,Q lần lượt là trung điểm AC,BC,BD,AD. Tìm điều kiện của tứ diện ABCD để MNPQ là hình thoi?
Quảng cáo
Trả lời:
Vì MN và PQ lần lượt là đường trung bình của tam giác ABC và ABD nên:\(\left\{ {\begin{array}{*{20}{c}}{MN//PQ//AB}\\{MN = PQ = \frac{1}{2}AB}\end{array}} \right.\)=> MNPQ là hình bình hành.
Để MNPQ trở thành hình thoi ta cần thêm yếu tố \[MN = PN.\]
Ta có: PN là đường trung bình của tam giác BCD nên\[PN = \frac{1}{2}CD\]
\[MN = PN \Leftrightarrow \frac{1}{2}AB = \frac{1}{2}CD \Leftrightarrow AB = CD.\]
Vậy để MNPQ là hình thoi cần thêm điều kiện AB=CD.
Đáp án cần chọn là: D
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có A là điểm chung thứ nhất giữa hai mặt phẳng (ACD) và (GAB).
Do\[BG \cap CD = M \Rightarrow \left\{ {\begin{array}{*{20}{c}}{M \in BG \subset (ABG) \Rightarrow M \in (ABG)}\\{M \in CD \subset (ACD) \Rightarrow M \in (ACD)}\end{array}} \right.\]
⇒M là điểm chung thứ hai giữa hai mặt phẳng (ACD) và (GAB).
\[ \Rightarrow \left( {ABG} \right) \cap \left( {ACD} \right) = AM\mathop \to \limits^{} \] A đúng.
Ta có\(\left\{ {\begin{array}{*{20}{c}}{BI \subset (ABG)}\\{AM \subset (ABM)}\\{(ABG) \equiv (ABM)}\end{array}} \right. \Rightarrow AM,BI\) đồng phẳng.
\[ \Rightarrow J = BI \cap AM \Rightarrow A,J,M\] thẳng hàng→ B đúng.
Ta có \(\left\{ {\begin{array}{*{20}{c}}{DJ \subset (ACD)}\\{DJ \subset (BDJ)}\end{array}} \right. \Rightarrow DJ = (ACD) \cap (BDJ) \to \) D đúng.
Điểm I di động trên AG nên J có thể không phải là trung điểm của AM
→ C sai
Đáp án cần chọn là: C
Lời giải
Bước 1:
Trong (ABCD) lấy\[PH\parallel AC(H \in CD)\]
\( \Rightarrow PH||MN\) (Do\[AC||MN \Rightarrow H \in \left( {PMN} \right) \Rightarrow NH \subset \left( {PMN} \right)\]
Trong (SCD) gọi \[Q = NH \cap SD\]
Mà\[NH \subset \left( {PMN} \right) \Rightarrow Q \in \left( {PMN} \right)\]
Khi đó Q là giao điểm của SD với mp(MNP)
Bước 2:
Mà N là trung điểm của\[SC \Rightarrow \frac{{NC}}{{NS}} = 1\]
Mặt khác áp dụng định lí Ta-lét trong tam giác DPH ta có\[\frac{{HD}}{{HC}} = \frac{{DP}}{{OP}} = 3\] (vì P là trung điểm của OB).
Bước 3:
Áp dụng định lí Menelaus trong tam giác SCD với cát tuyến QNH ta có:
\[\frac{{HD}}{{HC}}.\frac{{NC}}{{NS}}.\frac{{QS}}{{QD}} = 1\]
Do đó ta có\[\frac{{QS}}{{QD}} = \frac{1}{3} \Rightarrow \frac{{SQ}}{{SD}} = \frac{1}{4}\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.