Câu hỏi:

25/06/2022 3,499

Cho tứ diện ABCD. Gọi M,N,P,Q lần lượt là trung điểm AC,BC,BD,AD. Tìm điều kiện của tứ diện ABCD để MNPQ là hình thoi?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì MN và PQ lần lượt là đường trung bình của tam giác ABC và ABD nên:\(\left\{ {\begin{array}{*{20}{c}}{MN//PQ//AB}\\{MN = PQ = \frac{1}{2}AB}\end{array}} \right.\)=> MNPQ là hình bình hành.

Để MNPQ trở thành hình thoi ta cần thêm yếu tố \[MN = PN.\]

Ta có: PN là đường trung bình của tam giác BCD nên\[PN = \frac{1}{2}CD\]

\[MN = PN \Leftrightarrow \frac{1}{2}AB = \frac{1}{2}CD \Leftrightarrow AB = CD.\]

Vậy để MNPQ là hình thoi cần thêm điều kiện AB=CD.

Đáp án cần chọn là: D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD, M là trung điểm CD, I là điểm ở trên đoạn thẳng AG, BI cắt mặt phẳng (ACD) tại J. Khẳng định nào sau đây sai?

Xem đáp án » 25/06/2022 29,513

Câu 2:

Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M,N,P lần lượt là trung điểm của SA, SC, OB. Gọi Q là giao điểm của SD với mp(MNP)). Tính \(\frac{{SQ}}{{SD}}\).

Xem đáp án » 25/06/2022 4,127

Câu 3:

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Lấy điểm I trên đoạn SO sao cho \(\frac{{SI}}{{SO}} = \frac{2}{3}\), BIBI cắt SD tại M và DI cắt SB tại N. Khi đó MNBD là hình gì?

Xem đáp án » 25/06/2022 1,927

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD không phải là hình thang. Trên cạnh SC lấy điểm M. Gọi  N là giao điểm của đường thẳng SD với mặt phẳng (AMB). Mệnh đề nào sau đây đúng?

Xem đáp án » 25/06/2022 1,917

Câu 5:

Cho tứ diện SABC. Gọi L,M,N lần lượt là các điểm trên các cạnh SA,SB và AC sao cho LM không song song với AB, LN không song song với SC. Mặt phẳng (LMN) cắt các đường thẳng AB,BC,SC lần lượt tại K,I,J. Ba điểm nào sau đây thẳng hàng?

Xem đáp án » 25/06/2022 1,806

Câu 6:

Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm của AB và CD. Mặt phẳng \[(\alpha )\;\]qua MN cắt AD,BC lần lượt tại PP và Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?

Xem đáp án » 25/06/2022 1,165
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua