Câu hỏi:

25/06/2022 3,590

Cho tứ diện ABCD. Gọi M,N,P,Q lần lượt là trung điểm AC,BC,BD,AD. Tìm điều kiện của tứ diện ABCD để MNPQ là hình thoi?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì MN và PQ lần lượt là đường trung bình của tam giác ABC và ABD nên:\(\left\{ {\begin{array}{*{20}{c}}{MN//PQ//AB}\\{MN = PQ = \frac{1}{2}AB}\end{array}} \right.\)=> MNPQ là hình bình hành.

Để MNPQ trở thành hình thoi ta cần thêm yếu tố \[MN = PN.\]

Ta có: PN là đường trung bình của tam giác BCD nên\[PN = \frac{1}{2}CD\]

\[MN = PN \Leftrightarrow \frac{1}{2}AB = \frac{1}{2}CD \Leftrightarrow AB = CD.\]

Vậy để MNPQ là hình thoi cần thêm điều kiện AB=CD.

Đáp án cần chọn là: D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD, M là trung điểm CD, I là điểm ở trên đoạn thẳng AG, BI cắt mặt phẳng (ACD) tại J. Khẳng định nào sau đây sai?

Lời giải

Ta có A là điểm chung thứ nhất giữa hai mặt phẳng (ACD) và (GAB).

Do\[BG \cap CD = M \Rightarrow \left\{ {\begin{array}{*{20}{c}}{M \in BG \subset (ABG) \Rightarrow M \in (ABG)}\\{M \in CD \subset (ACD) \Rightarrow M \in (ACD)}\end{array}} \right.\]

⇒M là điểm chung thứ hai giữa hai mặt phẳng (ACD) và (GAB).

\[ \Rightarrow \left( {ABG} \right) \cap \left( {ACD} \right) = AM\mathop \to \limits^{} \] A đúng.

Ta có\(\left\{ {\begin{array}{*{20}{c}}{BI \subset (ABG)}\\{AM \subset (ABM)}\\{(ABG) \equiv (ABM)}\end{array}} \right. \Rightarrow AM,BI\)  đồng phẳng.

\[ \Rightarrow J = BI \cap AM \Rightarrow A,J,M\] thẳng hàng→ B đúng.

Ta có \(\left\{ {\begin{array}{*{20}{c}}{DJ \subset (ACD)}\\{DJ \subset (BDJ)}\end{array}} \right. \Rightarrow DJ = (ACD) \cap (BDJ) \to \) D đúng.

Điểm I di động trên AG nên J có thể không phải là trung điểm của AM

→ C sai

Đáp án cần chọn là: C

Câu 2

Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M,N,P lần lượt là trung điểm của SA, SC, OB. Gọi Q là giao điểm của SD với mp(MNP)). Tính \(\frac{{SQ}}{{SD}}\).

Lời giải

Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M,N,P lần lượt là trung điểm của SA, SC, OB. Gọi Q là giao điểm của SD với mp(MNP)). Tính  (ảnh 1)

Bước 1:

Trong (ABCD) lấy\[PH\parallel AC(H \in CD)\]

\( \Rightarrow PH||MN\) (Do\[AC||MN \Rightarrow H \in \left( {PMN} \right) \Rightarrow NH \subset \left( {PMN} \right)\]

Trong (SCD) gọi \[Q = NH \cap SD\]

Mà\[NH \subset \left( {PMN} \right) \Rightarrow Q \in \left( {PMN} \right)\]

Khi đó  Q là giao điểm của SD với mp(MNP)

Bước 2:

Mà N là trung điểm của\[SC \Rightarrow \frac{{NC}}{{NS}} = 1\]

Mặt khác áp dụng định lí Ta-lét trong tam giác DPH  ta có\[\frac{{HD}}{{HC}} = \frac{{DP}}{{OP}} = 3\] (vì P là trung điểm của OB).

Bước 3:

Áp dụng định lí Menelaus trong tam giác SCD với cát tuyến QNH ta có:

\[\frac{{HD}}{{HC}}.\frac{{NC}}{{NS}}.\frac{{QS}}{{QD}} = 1\]

Do đó ta có\[\frac{{QS}}{{QD}} = \frac{1}{3} \Rightarrow \frac{{SQ}}{{SD}} = \frac{1}{4}\]

Đáp án cần chọn là: A

Câu 3

Cho hình chóp S.ABCD có đáy ABCD không phải là hình thang. Trên cạnh SC lấy điểm M. Gọi  N là giao điểm của đường thẳng SD với mặt phẳng (AMB). Mệnh đề nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay