Câu hỏi:

25/06/2022 2,055 Lưu

Cho tứ diện SABC. Gọi L,M,N lần lượt là các điểm trên các cạnh SA,SB và AC sao cho LM không song song với AB, LN không song song với SC. Mặt phẳng (LMN) cắt các đường thẳng AB,BC,SC lần lượt tại K,I,J. Ba điểm nào sau đây thẳng hàng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có

● \[M \in SB\;\] suy MM là điểm chung của (LMN) và (SBC).

● I là điểm chung của (LMN) và (SBC).

● J là điểm chung của (LMN) và (SBC).

Vậy M,I,J thẳng hàng vì cùng thuộc giao tuyến của (LMN) và (SBC).

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có A là điểm chung thứ nhất giữa hai mặt phẳng (ACD) và (GAB).

Do\[BG \cap CD = M \Rightarrow \left\{ {\begin{array}{*{20}{c}}{M \in BG \subset (ABG) \Rightarrow M \in (ABG)}\\{M \in CD \subset (ACD) \Rightarrow M \in (ACD)}\end{array}} \right.\]

⇒M là điểm chung thứ hai giữa hai mặt phẳng (ACD) và (GAB).

\[ \Rightarrow \left( {ABG} \right) \cap \left( {ACD} \right) = AM\mathop \to \limits^{} \] A đúng.

Ta có\(\left\{ {\begin{array}{*{20}{c}}{BI \subset (ABG)}\\{AM \subset (ABM)}\\{(ABG) \equiv (ABM)}\end{array}} \right. \Rightarrow AM,BI\)  đồng phẳng.

\[ \Rightarrow J = BI \cap AM \Rightarrow A,J,M\] thẳng hàng→ B đúng.

Ta có \(\left\{ {\begin{array}{*{20}{c}}{DJ \subset (ACD)}\\{DJ \subset (BDJ)}\end{array}} \right. \Rightarrow DJ = (ACD) \cap (BDJ) \to \) D đúng.

Điểm I di động trên AG nên J có thể không phải là trung điểm của AM

→ C sai

Đáp án cần chọn là: C

Câu 2

Lời giải

Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M,N,P lần lượt là trung điểm của SA, SC, OB. Gọi Q là giao điểm của SD với mp(MNP)). Tính  (ảnh 1)

Bước 1:

Trong (ABCD) lấy\[PH\parallel AC(H \in CD)\]

\( \Rightarrow PH||MN\) (Do\[AC||MN \Rightarrow H \in \left( {PMN} \right) \Rightarrow NH \subset \left( {PMN} \right)\]

Trong (SCD) gọi \[Q = NH \cap SD\]

Mà\[NH \subset \left( {PMN} \right) \Rightarrow Q \in \left( {PMN} \right)\]

Khi đó  Q là giao điểm của SD với mp(MNP)

Bước 2:

Mà N là trung điểm của\[SC \Rightarrow \frac{{NC}}{{NS}} = 1\]

Mặt khác áp dụng định lí Ta-lét trong tam giác DPH  ta có\[\frac{{HD}}{{HC}} = \frac{{DP}}{{OP}} = 3\] (vì P là trung điểm của OB).

Bước 3:

Áp dụng định lí Menelaus trong tam giác SCD với cát tuyến QNH ta có:

\[\frac{{HD}}{{HC}}.\frac{{NC}}{{NS}}.\frac{{QS}}{{QD}} = 1\]

Do đó ta có\[\frac{{QS}}{{QD}} = \frac{1}{3} \Rightarrow \frac{{SQ}}{{SD}} = \frac{1}{4}\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP