Câu hỏi:

25/06/2022 363

Cho tứ diện ABCD. Trên cạnh AD lấy trung điểm M, trên cạnh BC lấy điểm N bất kỳ. Gọi (α) là mặt phẳng chứa đường thẳng MN và song song với CD. Xác định vị trí của điểm N trên cạnh BC sao cho thiết diện là hình bình hành.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho tứ diện ABCD. Trên cạnh AD lấy trung điểm M, trên cạnh BC lấy điểm N bất kỳ. Gọi  (ảnh 1)

\(\left\{ {\begin{array}{*{20}{c}}{M \in (\alpha ) \cap (ACD)}\\{CD\parallel (\alpha )}\\{CD \subset (ACD)}\end{array}} \right.\)

Suy ra\[MP//CD\] với \[P \in CD\]

Tương tự \(\left\{ {\begin{array}{*{20}{c}}{N \in (\alpha ) \cap (BCD)}\\{CD\parallel (\alpha )}\\{CD \subset (BCD)}\end{array}} \right.\)

Suy ra\[NQ//CD\left( {Q \in BD} \right)\]

Vậy thiết diện là tứ giác MPNQ có\[MP//NQ//CD\] nên MPNQ  là hình thang.

Để MPNQ là hình bình hành thì cần thêm điều kiện MP=NQ.

Mà\[MP = \frac{1}{2}CD\] (do MP  là đường trung bình của tam giác ACD).

Suy ra\[NQ = \frac{1}{2}CD\] Mà NQ//CD  nên NQ  là đường trung bình của tam giác BCD .

Vậy N là trung điểm của BC  hay\[NB = \frac{1}{2}BC\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM=\(\frac{2}{3}\)SD (minh họa như hình vẽ). Mặt phẳng chứa AM và song song với BD cắt cạnh SC tại K. Tỷ số \(\frac{{SK}}{{SC}}\) bằng

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM= (ảnh 1)

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM= (ảnh 2)

Xem đáp án » 25/06/2022 42,910

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi A′ là điểm trên SA sao cho \[\overrightarrow {{\rm{AA}}'} = \frac{1}{2}\overrightarrow {A'S} \]. Mặt phẳng (α) qua A′ cắt các cạnh SB, SC, SD lần lượt tại B′, C′, D′. Tính giá trị của biểu thức \(T = \frac{{SB}}{{SB'}} + \frac{{SD}}{{SD'}} - \frac{{SC}}{{SC'}}\).

Xem đáp án » 25/06/2022 7,864

Câu 3:

Cho hình lập phương ABCD.A′B′C′D′ cạnh aa. Các điểm M,N,P theo thứ tự đó thuộc các cạnh BB′,C′D′,DA sao cho \[BM = C\prime N = DP = \frac{a}{3}\]. Tìm diện tích thiết diện S của hình lập phương khi cắt bởi mặt phẳng (MNP).

Xem đáp án » 25/06/2022 7,519

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi I,J lần lượt là trung điểm của các cạnh AD,BCvà G là trọng tâm tam giác SAB. Biết thiết diện của hình chóp cắt bởi mặt phẳng (IJG) là hình bình hành. Hỏi khẳng định nào sao đây đúng?

Xem đáp án » 25/06/2022 6,188

Câu 5:

Cho tứ diện ABCD có AB=6, CD=8. Cắt tứ diện bởi một mặt phẳng song song với AB, CD để thiết diện thu được là một hình thoi. Cạnh của hình thoi đó bằng

Xem đáp án » 25/06/2022 5,754

Câu 6:

Cho hình hộp ABCD.A′B′C′D′. Trên các cạnh AA′, BB′, CC′ lần lượt lấy ba điểm M, N, P sao cho \[\frac{{A'M}}{{{\rm{AA}}'}} = \frac{1}{3},\frac{{B'N}}{{BB'}} = \frac{2}{3},\frac{{C'P}}{{CC'}} = \frac{1}{2}\]. Biết mặt phẳng (MNP) cắt cạnh DD′ tại Q. Tính tỉ số \[\frac{{D'Q}}{{{\rm{DD}}'}}\]

Xem đáp án » 25/06/2022 4,396

Câu 7:

Cho hình chóp S.ABCD, G là điểm nằm trong tam giác SCD. E, F lần lượt là trung điểm của AB và AD. Thiết diện của hình chóp khi cắt bởi mặt phẳng (EFG) là

Xem đáp án » 25/06/2022 4,158

Bình luận


Bình luận