Câu hỏi:

25/06/2022 593 Lưu

Cho tứ diện ABCD. Trên cạnh AD lấy trung điểm M, trên cạnh BC lấy điểm N bất kỳ. Gọi (α) là mặt phẳng chứa đường thẳng MN và song song với CD. Xác định vị trí của điểm N trên cạnh BC sao cho thiết diện là hình bình hành.

A.\[NB = \frac{1}{2}BC\]

B.\[\frac{{NB}}{{NC}} = \frac{1}{2}\]

C. \[\frac{{BN}}{{CN}} = 2\]

D. \[NC = \frac{1}{3}NB.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tứ diện ABCD. Trên cạnh AD lấy trung điểm M, trên cạnh BC lấy điểm N bất kỳ. Gọi  (ảnh 1)

\(\left\{ {\begin{array}{*{20}{c}}{M \in (\alpha ) \cap (ACD)}\\{CD\parallel (\alpha )}\\{CD \subset (ACD)}\end{array}} \right.\)

Suy ra\[MP//CD\] với \[P \in CD\]

Tương tự \(\left\{ {\begin{array}{*{20}{c}}{N \in (\alpha ) \cap (BCD)}\\{CD\parallel (\alpha )}\\{CD \subset (BCD)}\end{array}} \right.\)

Suy ra\[NQ//CD\left( {Q \in BD} \right)\]

Vậy thiết diện là tứ giác MPNQ có\[MP//NQ//CD\] nên MPNQ  là hình thang.

Để MPNQ là hình bình hành thì cần thêm điều kiện MP=NQ.

Mà\[MP = \frac{1}{2}CD\] (do MP  là đường trung bình của tam giác ACD).

Suy ra\[NQ = \frac{1}{2}CD\] Mà NQ//CD  nên NQ  là đường trung bình của tam giác BCD .

Vậy N là trung điểm của BC  hay\[NB = \frac{1}{2}BC\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM= (ảnh 3)

Gọi mặt phẳng chứa AM và song song với BD là (α).

Trong (SBD) kẻ\[MN//BD\,\,\left( {N \in SB} \right)\] khi đó ta có\[\left( \alpha \right) \equiv \left( {AMN} \right)\]

Gọi\[O = AC \cap BD\] trong (SBD) gọi \[\left\{ I \right\} = MN \cap SO\]  trong (SAC) gọi\[K = AI \cap SC\] ta có:

\(\left\{ {\begin{array}{*{20}{c}}{K \in AI \subset (AMN)}\\{K \in SC}\end{array}} \right. \Rightarrow K = \left( {AMN} \right) \cap SC\) hay\[K = \left( \alpha \right) \cap SC\]

Áp dụng định lí Talets ta có\[\frac{{SI}}{{SO}} = \frac{{SM}}{{SD}} = \frac{2}{3}\]

\[ \Rightarrow \frac{{IS}}{{IO}} = 2\]

Ta có: O là trung điểm của AC nên\[\frac{{AO}}{{AC}} = \frac{1}{2}\]

Áp dụng định lí Menelaus trong tam giác SOC, cát tuyến AIK ta có:

\[\frac{{IS}}{{IO}}.\frac{{AO}}{{AC}}.\frac{{KC}}{{KS}} = 1 \Leftrightarrow 2.\frac{1}{2}.\frac{{KC}}{{KS}} = 1 \Leftrightarrow \frac{{KC}}{{KS}} = 1 \Rightarrow \frac{{SK}}{{SC}} = \frac{1}{2}\]

Đáp án cần chọn là: C

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi A′ là điểm trên SA sao cho  (ảnh 1)

Gọi O là giao của AC và BD. Ta có O là trung điểm của đoạn thẳng AC, BD.

Các đoạn thẳng SO,A′C′, B′D′ đồng quy tại I.

Ta có: \[{S_{SA'I}} + {S_{SC'I}} = {S_{SA'C'}} \Leftrightarrow \frac{{{S_{SA'I}}}}{{{S_{SAC}}}} + \frac{{{S_{SC'I}}}}{{{S_{SAC}}}} = \frac{{{S_{SA'C'}}}}{{{S_{SAC}}}}\]

\[ \Leftrightarrow \frac{{{S_{SA'I}}}}{{2{S_{SAO}}}} + \frac{{{S_{SC'I}}}}{{2{S_{SCO}}}} = \frac{{{S_{SA'C'}}}}{{{S_{SAC}}}}\]

\[ \Leftrightarrow \frac{{SA'}}{{2SA}}.\frac{{SI}}{{SO}} + \frac{{SC'}}{{2SC}}.\frac{{SI}}{{SO}} = \frac{{SA'}}{{SA}}.\frac{{SC'}}{{SC}}\]

\[ \Leftrightarrow \frac{{SI}}{{2SO}}\left( {\frac{{SA'}}{{SA}} + \frac{{SC'}}{{SC}}} \right) = \frac{{SA'}}{{SA}}.\frac{{SC'}}{{SC}} \Leftrightarrow \frac{{SA}}{{SA'}} + \frac{{SC}}{{SC'}} = 2.\frac{{SO}}{{SI}}\]

Tương tự:\[\frac{{SB}}{{SB'}} + \frac{{SD}}{{SD'}} = 2.\frac{{SO}}{{SI}}\]

Suy ra:\[\frac{{SB}}{{SB'}} + \frac{{SD}}{{SD'}} - \frac{{SC}}{{SC'}} = \frac{{SA}}{{SA'}} = \frac{3}{2}\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\[\frac{{3\sqrt {15} {a^2}}}{{16}}\]

B. \[\frac{{3\sqrt 5 {a^2}}}{{16}}\]

C. \[\frac{{3\sqrt 5 {a^2}}}{8}\]

D. \[\frac{{\sqrt {15} {a^2}}}{{16}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP