Câu hỏi:
25/06/2022 341Cho hình chóp S.ABCD có đáy là hình thoi cạnh 3a, SA=SD=3a, SB=SC=\(3a\sqrt 3 \). Gọi M, N lần lượt là trung điểm của các cạnh SA và SD, P là điểm thuộc cạnh AB sao cho AP=2a. Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do MN//AD⇒MN//BC. Vậy (MNP) cắt mặt phẳng (ABCD) theo giao tuyến đi qua P, song song BC và cắt DC tại điểm I. Thiết diện của khối chóp cắt bởi mặt phẳng (MNP) chính là hình thang MNIP.
Do \[\Delta NDI = \Delta MAP\;\] nên MP=NI. Từ đó suy ra MNIP là hình thang cân.
Trong tam giác SAB, ta có
\[\cos \widehat {SAB} = \frac{{S{A^2} + A{B^2} - S{B^2}}}{{2.SA.AB}} = \frac{{9{a^2} + 9{a^2} - 27{a^2}}}{{2.3a.3a}} = - \frac{{9{a^2}}}{{18{a^2}}} = - \frac{1}{2}\]
Trong tam giác MAP, ta có
\[M{P^2} = M{A^2} + A{P^2} - 2MA.AP.\cos \widehat {MAP} = \frac{{9{a^2}}}{4} + 4{a^2} + \frac{{3a}}{2} \cdot 2a = \frac{{37{a^2}}}{4} \Rightarrow MP = \frac{{a\sqrt {37} }}{2}\]
Từ M kẻ \[MF \bot PI\], từ N kẻ \[NE \bot PI\].
Dễ thấy, tứ giác MNEF là hình chữ nhật và từ đó suy ra
\[MN = EF = \frac{{3a}}{2} \Rightarrow PF = EI = \frac{{3a}}{4}\]
Xét tam giác vuông MFP, ta có
\[MF = \sqrt {M{P^2} - F{P^2}} = \sqrt {\frac{{37{a^2}}}{4} - \frac{{9{a^2}}}{{16}}} = \frac{{a\sqrt {139} }}{4}\]
Ta có
\[{S_{MNIP}} = \frac{{\left( {MN + IP} \right).MF}}{2} = \frac{{\left( {\frac{{3a}}{2} + 3a} \right) \cdot \frac{{a\sqrt {139} }}{4}}}{2} = \frac{{9{a^2}\sqrt {139} }}{{16}}\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM=\(\frac{2}{3}\)SD (minh họa như hình vẽ). Mặt phẳng chứa AM và song song với BD cắt cạnh SC tại K. Tỷ số \(\frac{{SK}}{{SC}}\) bằng
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi A′ là điểm trên SA sao cho \[\overrightarrow {{\rm{AA}}'} = \frac{1}{2}\overrightarrow {A'S} \]. Mặt phẳng (α) qua A′ cắt các cạnh SB, SC, SD lần lượt tại B′, C′, D′. Tính giá trị của biểu thức \(T = \frac{{SB}}{{SB'}} + \frac{{SD}}{{SD'}} - \frac{{SC}}{{SC'}}\).
Câu 3:
Cho hình lập phương ABCD.A′B′C′D′ cạnh aa. Các điểm M,N,P theo thứ tự đó thuộc các cạnh BB′,C′D′,DA sao cho \[BM = C\prime N = DP = \frac{a}{3}\]. Tìm diện tích thiết diện S của hình lập phương khi cắt bởi mặt phẳng (MNP).
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi I,J lần lượt là trung điểm của các cạnh AD,BCvà G là trọng tâm tam giác SAB. Biết thiết diện của hình chóp cắt bởi mặt phẳng (IJG) là hình bình hành. Hỏi khẳng định nào sao đây đúng?
Câu 5:
Cho tứ diện ABCD có AB=6, CD=8. Cắt tứ diện bởi một mặt phẳng song song với AB, CD để thiết diện thu được là một hình thoi. Cạnh của hình thoi đó bằng
Câu 6:
Cho hình chóp S.ABCD, G là điểm nằm trong tam giác SCD. E, F lần lượt là trung điểm của AB và AD. Thiết diện của hình chóp khi cắt bởi mặt phẳng (EFG) là
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, mặt bên SAB là tam giác vuông tại A, \(SA = a\sqrt 3 ,SB = 2a\). Điểm M nằm trên đoạn AD sao cho AM=2MD. Gọi (P) là mặt phẳng qua M và song song với (SAB). Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng (P).
về câu hỏi!