Câu hỏi:

25/06/2022 5,098

Cho hình hộp ABCD.A′B′C′D′. Trên các cạnh AA′, BB′, CC′ lần lượt lấy ba điểm M, N, P sao cho \[\frac{{A'M}}{{{\rm{AA}}'}} = \frac{1}{3},\frac{{B'N}}{{BB'}} = \frac{2}{3},\frac{{C'P}}{{CC'}} = \frac{1}{2}\]. Biết mặt phẳng (MNP) cắt cạnh DD′ tại Q. Tính tỉ số \[\frac{{D'Q}}{{{\rm{DD}}'}}\]

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình hộp ABCD.A′B′C′D′. Trên các cạnh AA′, BB′, CC′ lần lượt lấy ba điểm M, N, P sao cho  (ảnh 1)

Ta có\(\left\{ {\begin{array}{*{20}{c}}{(BB\prime C\prime C)//(AA\prime D\prime D)}\\{(MNP) \cap (BB\prime C\prime C) = NP}\\{(MNP) \cap (AA\prime D\prime D) = MQ}\end{array}} \right. \Rightarrow NP//MQ\)

Tương tự:\(\left\{ {\begin{array}{*{20}{c}}{(AA\prime B\prime B)//(CC\prime D\prime D)}\\{(MNP) \cap (AA\prime B\prime B) = MN}\\{(MNP) \cap (CC\prime D\prime D) = PQ}\end{array} \Rightarrow MN//PQ} \right.\)

Suy ra mặt phẳng (MNP) cắt hình hộp theo thiết diện là hình bình hành MNPQ.

Mặt khác\(\left\{ {\begin{array}{*{20}{c}}{BN = \frac{1}{3}BB\prime = \frac{1}{3}AA\prime }\\{AM = \frac{2}{3}AA\prime }\end{array}} \right. \Rightarrow \frac{{BN}}{{AM}} = \frac{1}{2}\)

Trong mặt phẳng (ABB′A′), gọi E là giao điểm của hai đường thẳng MN và AB thì BN là đường trung bình của tam giác AME ⇒N là trung điểm của đoạn thẳng ME.

Trong mặt phẳng (MNPQ), gọi F là giao điểm của EP và MQ thì NP là đường trung bình của tam giác MEF (vì NP//MQ và N là trung điểm EM)\[ \Rightarrow NP = \frac{1}{2}MF\]

Mà tứ giác MNPQ là hình bình hành nên NP=MQ⇒Q là trung điểm MF hay\[\frac{{FQ}}{{FM}} = \frac{1}{2}\]

Lại có \[D'Q\,//\,A'M \Rightarrow \frac{{D'Q}}{{A'M}} = \frac{{FQ}}{{FM}} = \frac{1}{2}\]

\[ \Leftrightarrow \frac{{D'Q}}{{\frac{1}{3}AA'}} = \frac{1}{2} \Leftrightarrow \frac{{D'Q}}{{DD'}} = \frac{1}{2}.\frac{1}{3} = \frac{1}{6}\]

Đáp án cần chọn là: A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM=\(\frac{2}{3}\)SD (minh họa như hình vẽ). Mặt phẳng chứa AM và song song với BD cắt cạnh SC tại K. Tỷ số \(\frac{{SK}}{{SC}}\) bằng

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM= (ảnh 1)

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM= (ảnh 2)

Xem đáp án » 25/06/2022 46,205

Câu 2:

Cho hình lập phương ABCD.A′B′C′D′ cạnh aa. Các điểm M,N,P theo thứ tự đó thuộc các cạnh BB′,C′D′,DA sao cho \[BM = C\prime N = DP = \frac{a}{3}\]. Tìm diện tích thiết diện S của hình lập phương khi cắt bởi mặt phẳng (MNP).

Xem đáp án » 25/06/2022 8,849

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi A′ là điểm trên SA sao cho \[\overrightarrow {{\rm{AA}}'} = \frac{1}{2}\overrightarrow {A'S} \]. Mặt phẳng (α) qua A′ cắt các cạnh SB, SC, SD lần lượt tại B′, C′, D′. Tính giá trị của biểu thức \(T = \frac{{SB}}{{SB'}} + \frac{{SD}}{{SD'}} - \frac{{SC}}{{SC'}}\).

Xem đáp án » 25/06/2022 8,236

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi I,J lần lượt là trung điểm của các cạnh AD,BCvà G là trọng tâm tam giác SAB. Biết thiết diện của hình chóp cắt bởi mặt phẳng (IJG) là hình bình hành. Hỏi khẳng định nào sao đây đúng?

Xem đáp án » 25/06/2022 6,895

Câu 5:

Cho tứ diện ABCD có AB=6, CD=8. Cắt tứ diện bởi một mặt phẳng song song với AB, CD để thiết diện thu được là một hình thoi. Cạnh của hình thoi đó bằng

Xem đáp án » 25/06/2022 6,441

Câu 6:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, các cạnh bên bằng \(a\sqrt 2 \) Gọi M là trung điểm của SD. Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng (ABM).

Xem đáp án » 25/06/2022 6,056
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua