Câu hỏi:
25/06/2022 1,009Cho hình hộp ABCD.A′B′C′D′. Trên các cạnh AA′, BB′, CC′ lần lượt lấy ba điểm M, N, P sao cho \[\frac{{A'M}}{{{\rm{AA}}'}} = \frac{1}{3},\frac{{B'N}}{{BB'}} = \frac{2}{3},\frac{{C'P}}{{CC'}} = \frac{1}{2}\]. Biết mặt phẳng (MNP) cắt cạnh DD′ tại Q. Tính tỉ số \[\frac{{D'Q}}{{{\rm{DD}}'}}\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có\(\left\{ {\begin{array}{*{20}{c}}{(BB\prime C\prime C)//(AA\prime D\prime D)}\\{(MNP) \cap (BB\prime C\prime C) = NP}\\{(MNP) \cap (AA\prime D\prime D) = MQ}\end{array}} \right. \Rightarrow NP//MQ\)
Tương tự:\(\left\{ {\begin{array}{*{20}{c}}{(AA\prime B\prime B)//(CC\prime D\prime D)}\\{(MNP) \cap (AA\prime B\prime B) = MN}\\{(MNP) \cap (CC\prime D\prime D) = PQ}\end{array} \Rightarrow MN//PQ} \right.\)
Suy ra mặt phẳng (MNP) cắt hình hộp theo thiết diện là hình bình hành MNPQ.
Mặt khác\(\left\{ {\begin{array}{*{20}{c}}{BN = \frac{1}{3}BB\prime = \frac{1}{3}AA\prime }\\{AM = \frac{2}{3}AA\prime }\end{array}} \right. \Rightarrow \frac{{BN}}{{AM}} = \frac{1}{2}\)
Trong mặt phẳng (ABB′A′), gọi E là giao điểm của hai đường thẳng MN và AB thì BN là đường trung bình của tam giác AME ⇒N là trung điểm của đoạn thẳng ME.
Trong mặt phẳng (MNPQ), gọi F là giao điểm của EP và MQ thì NP là đường trung bình của tam giác MEF (vì NP//MQ và N là trung điểm EM)\[ \Rightarrow NP = \frac{1}{2}MF\]
Mà tứ giác MNPQ là hình bình hành nên NP=MQ⇒Q là trung điểm MF hay\[\frac{{FQ}}{{FM}} = \frac{1}{2}\]
Lại có \[D'Q\,//\,A'M \Rightarrow \frac{{D'Q}}{{A'M}} = \frac{{FQ}}{{FM}} = \frac{1}{2}\]
\[ \Leftrightarrow \frac{{D'Q}}{{\frac{1}{3}AA'}} = \frac{1}{2} \Leftrightarrow \frac{{D'Q}}{{DD'}} = \frac{1}{2}.\frac{1}{3} = \frac{1}{6}\]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM=\(\frac{2}{3}\)SD (minh họa như hình vẽ). Mặt phẳng chứa AM và song song với BD cắt cạnh SC tại K. Tỷ số \(\frac{{SK}}{{SC}}\) bằng
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi A′ là điểm trên SA sao cho \[\overrightarrow {{\rm{AA}}'} = \frac{1}{2}\overrightarrow {A'S} \]. Mặt phẳng (α) qua A′ cắt các cạnh SB, SC, SD lần lượt tại B′, C′, D′. Tính giá trị của biểu thức \(T = \frac{{SB}}{{SB'}} + \frac{{SD}}{{SD'}} - \frac{{SC}}{{SC'}}\).
Câu 3:
Cho hình lập phương ABCD.A′B′C′D′ cạnh aa. Các điểm M,N,P theo thứ tự đó thuộc các cạnh BB′,C′D′,DA sao cho \[BM = C\prime N = DP = \frac{a}{3}\]. Tìm diện tích thiết diện S của hình lập phương khi cắt bởi mặt phẳng (MNP).
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi I,J lần lượt là trung điểm của các cạnh AD,BCvà G là trọng tâm tam giác SAB. Biết thiết diện của hình chóp cắt bởi mặt phẳng (IJG) là hình bình hành. Hỏi khẳng định nào sao đây đúng?
Câu 5:
Cho tứ diện ABCD có AB=6, CD=8. Cắt tứ diện bởi một mặt phẳng song song với AB, CD để thiết diện thu được là một hình thoi. Cạnh của hình thoi đó bằng
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, mặt bên SAB là tam giác vuông tại A, \(SA = a\sqrt 3 ,SB = 2a\). Điểm M nằm trên đoạn AD sao cho AM=2MD. Gọi (P) là mặt phẳng qua M và song song với (SAB). Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng (P).
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là một điểm trên cạnh SC và (α) là mặt phẳng chứa AM và song song với BD. Gọi E và F lần lượt là giao điểm của (α) với các cạnh SB,SD, gọi I là giao điểm của ME và BC,J là giao điểm của MF và CD. Nhận xét gì về ba điểm I,J,A?
về câu hỏi!