Câu hỏi:
25/06/2022 142Cho tứ diện ABCD có trọng tâm G. Chọn khẳng định đúng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\[\begin{array}{*{20}{l}}{A{B^2} + A{C^2} + A{D^2} + B{C^2} + B{D^2} + C{D^2}}\\{ = {{\left( {\overrightarrow {AG} + \overrightarrow {GB} } \right)}^2} + {{\left( {\overrightarrow {AG} + \overrightarrow {GC} } \right)}^2} + {{\left( {\overrightarrow {AG} + \overrightarrow {GD} } \right)}^2} + {{\left( {\overrightarrow {BG} + \overrightarrow {GC} } \right)}^2} + {{\left( {\overrightarrow {BG} + \overrightarrow {GD} } \right)}^2} + {{\left( {\overrightarrow {CG} + \overrightarrow {GD} } \right)}^2}}\end{array}\]\[\begin{array}{l} = 3A{G^2} + 3B{G^2} + 3C{G^2} + 3D{G^2} + 2\overrightarrow {AG} .\overrightarrow {GB} \\ + 2\overrightarrow {AG} .\overrightarrow {GC} + 2\overrightarrow {AG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {CG} .\overrightarrow {GD} \left( 1 \right)\end{array}\]
Lại có:
\[\begin{array}{*{20}{l}}{\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {G{\rm{D}}} = \vec 0 \Leftrightarrow {{\left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {G{\rm{D}}} } \right)}^2} = 0}\\\begin{array}{l} \Leftrightarrow G{A^2} + G{B^2} + G{C^2} + G{{\rm{D}}^2} = 2\overrightarrow {AG} .\overrightarrow {GB} \\ + 2\overrightarrow {AG} .\overrightarrow {GC} + 2\overrightarrow {AG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {BG} .\overrightarrow {GD} + 2\overrightarrow {CG} .\overrightarrow {GD} \left( 2 \right)\end{array}\end{array}\]
Từ (1) và (2) suy ra
\[A{B^2} + A{C^2} + A{D^2} + B{C^2} + B{D^2} + C{D^2} = 4\left( {G{A^2} + G{B^2} + G{C^2} + G{D^2}} \right)\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho \[\left| {\vec a} \right| = 3,\left| {\vec b} \right| = 5\], góc giữa \(\overrightarrow a \)và \(\overrightarrow b \)bằng\({120^0}\). Chọn khẳng định sai trong các khẳng định sau?
Câu 2:
Cho hình chóp S.ABC có SA=SB và CA=CB. Tính số đo của góc giữa hai đường thẳng chéo nhau SC và AB.
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trung điểm H của cạnh AB. Biết tam giác SAB là tam giác đều. Số đo của góc giữa SA và CD là
Câu 4:
Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD bằng:
Câu 5:
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo của góc (MN,SC) bằng:
Câu 6:
Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \[\overrightarrow {AF} \]và \(\overrightarrow {EG} \)?
Câu 7:
Cho tứ diện ABCD có AB vuông góc với CD, AB=CD=6. M là điểm thuộc cạnh BC sao cho \[MC = x.BC(0 < x < 1)\] Mặt phẳng(P) song song với AB và CD lần lượt cắt BC,DB,AD,AC tại M,N,P,Q. Diện tích lớn nhất của tứ giác bằng bao nhiêu?
về câu hỏi!