Câu hỏi:
25/06/2022 241Cho tứ diện ABCD có AB,BC,CD đôi một vuông góc với nhau và AB=a, BC=b,CD=c. Độ dài đoạn thẳng AD bằng
Quảng cáo
Trả lời:
Ta có\(\left\{ {\begin{array}{*{20}{c}}{AB \bot BC}\\{AB \bot CD}\end{array}} \right. \Rightarrow AB \bot (BCD) \Rightarrow \) tam giác ABD vuông tại B.B.
Lại có\[BC \bot CD\] nên tam giác BCD vuông tại C.
Khi đó
\(\left\{ {\begin{array}{*{20}{c}}{A{D^2} = A{B^2} + B{D^2}}\\{B{D^2} = B{C^2} + C{D^2}}\end{array}} \right. \Rightarrow A{D^2} = A{B^2} + B{C^2} + C{D^2}\)
\[ \Rightarrow AD = \sqrt {{a^2} + {b^2} + {c^2}.} \]
Đáp án cần chọn là: A
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \[SA = SC\,\,\, \Rightarrow {\rm{\Delta }}SAC\] cân tại S mà O là trung điểm \[AC\,\, \Rightarrow \,\,SO \bot AC.\]Tương tự, ta cũng có\[SO \bot BD\] mà \[AC \cap BD = O \subset \left( {ABCD} \right) \Rightarrow SO \bot \left( {ABCD} \right).\]
Đáp án cần chọn là: C
Lời giải
Gọi M,N,P lần lượt là hình chiếu của S lên các cạnh AB,BC,AC
\[ \Rightarrow \widehat {SMH} = \widehat {SNH} = \widehat {SPH} \Rightarrow {\rm{\Delta }}SMH = {\rm{\Delta }}SNH = {\rm{\Delta }}SPH.\]
\[ \Rightarrow HM = HN = HP \Rightarrow H\] là tâm dường tròn nội tiếp của \[\Delta ABC.\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.