Câu hỏi:

25/06/2022 250

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \[SA \bot (ABCD).\] Mặt phẳng qua A và vuông góc với SC cắt SB,SC,SD theo thứ tự tại H,M,K. Chọn khẳng định sai trong các khẳng định sau?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy ABCD là hình vuông,  (ảnh 1)

Ta có:

\(\left\{ {\begin{array}{*{20}{c}}{BD \bot AC(t/cHV)}\\{BD \bot SA(gt)}\end{array}} \right. \Rightarrow BD \bot (SAC) \Rightarrow BD \bot AM\)

Gọi \[O = AC \cap BD,I = SO \cap HK\]

(P) là mặt phẳng A và vuông góc với SC

Qua I kẻ\[{\rm{\Delta }}\parallel BD \Rightarrow {\rm{\Delta }} \bot AM \Rightarrow {\rm{\Delta }} \subset \left( P \right)\]

Khi đó:\[K = {\rm{\Delta }} \cap SD,H = {\rm{\Delta }} \cap SB\]

Ta có:\[AK \bot \left( {SDC} \right)\] mà \[HK \cap \left( {SDC} \right) = K \Rightarrow AK\]  không vuông góc với HK.

Đáp án cần chọn là A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Biết rằng SA=SC, SB=SD. Khẳng định nào sau đây là đúng ? (ảnh 1)

Vì \[SA = SC\,\,\, \Rightarrow {\rm{\Delta }}SAC\] cân tại S mà O là trung điểm \[AC\,\, \Rightarrow \,\,SO \bot AC.\]Tương tự, ta cũng có\[SO \bot BD\]  mà \[AC \cap BD = O \subset \left( {ABCD} \right) \Rightarrow SO \bot \left( {ABCD} \right).\]

Đáp án cần chọn là: C

Câu 2

Lời giải

Gọi M,N,P lần lượt là hình chiếu của S lên các cạnh AB,BC,AC

\[ \Rightarrow \widehat {SMH} = \widehat {SNH} = \widehat {SPH} \Rightarrow {\rm{\Delta }}SMH = {\rm{\Delta }}SNH = {\rm{\Delta }}SPH.\]

\[ \Rightarrow HM = HN = HP \Rightarrow H\] là tâm dường tròn nội tiếp của \[\Delta ABC.\]

 Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP