Câu hỏi:

27/06/2022 6,029

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng \(\frac{{a\sqrt {21} }}{6}\). Tính khoảng cách d từ đỉnh A đến mặt phẳng (SBC) .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi O là tâm của tam giác đều ABC.

Do hình chóp S.ABC đều nên suy ra \[SO \bot \left( {ABC} \right)\]

Gọi E là trung điểm BC ta có:

\[\begin{array}{*{20}{l}}{AO \cap \left( {SBC} \right) = E \Rightarrow \frac{{d\left( {A;\left( {SBC} \right)} \right)}}{{d\left( {O;\left( {SBC} \right)} \right)}} = \frac{{AE}}{{OE}} = 3}\\{ \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = 3.d\left( {O;\left( {SBC} \right)} \right).}\end{array}\]

Trong (SAE) kẻ \[OK \bot SE\,\,\,\,\left( 1 \right)\]

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{BC \bot AE}\\{BC \bot SO}\end{array}} \right. \Rightarrow BC \bot (SAE) \Rightarrow BC \bot OK(2)\)

Từ (1) và (2) \[ \Rightarrow OK \bot \left( {SBC} \right) \Rightarrow d\left( {O;\left( {SBC} \right)} \right) = OK\]

Tính được \[SO = \sqrt {S{A^2} - {{\left( {\frac{2}{3}AE} \right)}^2}} = \sqrt {\frac{{21{a^2}}}{{36}} - {{\left( {\frac{2}{3}.\frac{{a\sqrt 3 }}{2}} \right)}^2}} = \frac{a}{2}\] và\[OE = \frac{1}{3}AE = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}.\]

Tam giác vuông SOE, có\[OK = \frac{{SO.OE}}{{\sqrt {S{O^2} + O{E^2}} }} = \frac{a}{4}\]

Vậy\[d\left( {A;\left( {SBC} \right)} \right) = 3OK = \frac{{3a}}{4}\]

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng  (ảnh 1)

Đáp án cần chọn là: B

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lập phương ABCD,A′B′C′D′ có cạnh bằng 3a. Khoảng cách từ A′ đến mặt phẳng (ABCD) bằng

Xem đáp án » 27/06/2022 8,432

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc \({60^ \circ }\)Tính khoảng cách d từ điểm D đến mặt phẳng (SBC).

Xem đáp án » 27/06/2022 4,741

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng (ABCD) một góc \({30^0}\).Tính khoảng cách d từ B đến mặt phẳng (SCD) theo a.

Xem đáp án » 27/06/2022 3,087

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)

Xem đáp án » 27/06/2022 2,680

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \(AB = a\sqrt 2 \). Cạnh bên SA=2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách dd từ D đến mặt phẳng (SBC).

Xem đáp án » 13/07/2024 2,644

Câu 6:

Cho tứ diện OABC có ba cạnh OA,OB,OC đôi một vuông góc với nhau. Biết khoảng cách từ điểm O đến các đường thẳng BC,CA,AB lần lượt là \(a,a\sqrt 2 ,a\sqrt 3 \). Khoảng cách từ điểm O đến mặt phẳng (ABC) là \(\frac{{2a\sqrt m }}{{11}}\). Tìm m.

Xem đáp án » 13/07/2024 2,455
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay