Câu hỏi:

28/06/2022 1,180

Cho số nguyên dương \[n \ge 2\], số a được gọi là căn bậc n của số thực b nếu:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho số thực b và số nguyên dương \[n\left( {n \ge 2} \right)\] Số a được gọi là căn bậc n của số b nếu \[{a^n} = b\].

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Vì \[ - \frac{1}{4} > - \frac{1}{3}\] nên \[{\left( {a - 2} \right)^{ - \frac{1}{4}}} \le {\left( {a - 2} \right)^{ - \frac{1}{3}}} \Leftrightarrow 0 < a - 2 \le 1 \Leftrightarrow 2 < a \le 3\]

Đáp án cần chọn là: C

Câu 2

Lời giải

Cho \[a \ge 0,m,n \in {N^ * }\] ta có: \[\sqrt[{mn}]{a} = \sqrt[n]{{\sqrt[m]{a}}}\]

Đáp án cần chọn là: D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP