Câu hỏi:
28/06/2022 137Cho số thực xx thỏa mãn \[lo{g_2}\left( {lo{g_8}x} \right) = lo{g_8}\left( {lo{g_2}x} \right).\] Tính giá trị của \[P = {(lo{g_2}x)^2}\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Điều kiện xác định:\(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{lo{g_2}x > 0}\\{lo{g_8}x > 0}\end{array}} \right.\)
Khi đó:
\[{\log _2}\left( {{{\log }_8}x} \right) = {\log _8}\left( {{{\log }_2}x} \right) \Leftrightarrow {\log _2}\left( {\frac{1}{3}{{\log }_2}x} \right) = {\log _2}\sqrt[3]{{\left( {{{\log }_2}x} \right)}}\]
\[ \Leftrightarrow \frac{1}{3}{\log _2}x = \sqrt[3]{{\left( {{{\log }_2}x} \right)}} \Leftrightarrow \frac{1}{{27}}\log _2^3x = {\log _2}x \Leftrightarrow {\left( {{{\log }_2}x} \right)^2} = 27\]
(vì \[{\log _2}x > 0\] nên chia cả hai vế cho \[{\log _2}x \ne 0\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 6:
Cho các số dương a,b,c,d. Biểu thức \[S = \ln \frac{a}{b} + \ln \frac{b}{c} + \ln \frac{c}{d} + \ln \frac{d}{a}\] bằng:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
về câu hỏi!