Câu hỏi:
28/06/2022 230Cho \[a > 0,b > 0\;\] thỏa mãn \[{a^2} + 4{b^2} = 5ab\]. Khẳng định nào sau đây đúng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: \[{a^2} + 4{b^2} = 5ab \Leftrightarrow {a^2} + 4ab + 4{b^2} = 9ab \Leftrightarrow {\left( {a + 2b} \right)^2} = 9ab\]
Logarit cơ số 1010 hai vế ta được:
\[\begin{array}{*{20}{l}}{\log {{\left( {a + 2b} \right)}^2} = \log \left( {9ab} \right) \Leftrightarrow 2\log \left( {a + 2b} \right) = \log 9 + \log a + \log b}\\{ \Leftrightarrow 2\log \left( {a + 2b} \right) = 2\log 3 + \log a + \log b \Leftrightarrow 2\left( {\log \left( {a + 2b} \right) - \log 3} \right) = \log a + \log b}\\{ \Leftrightarrow \log \frac{{a + 2b}}{3} = \frac{{\log a + \log b}}{2}}\end{array}\]
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 6:
Cho các số dương a,b,c,d. Biểu thức \[S = \ln \frac{a}{b} + \ln \frac{b}{c} + \ln \frac{c}{d} + \ln \frac{d}{a}\] bằng:
về câu hỏi!