Cho \[a > 0,b > 0\;\] thỏa mãn \[{a^2} + 4{b^2} = 5ab\]. Khẳng định nào sau đây đúng?
A.\[2\log \left( {a + 2b} \right) = 5\left( {\log a + \log b} \right)\]
B.\[\log \left( {a + 1} \right) + \log b = 1\]
C. \[\log \frac{{a + 2b}}{3} = \frac{{\log a + \log b}}{2}\]
D. \[5\log \left( {a + 2b} \right) = \log a - \log b\]
Câu hỏi trong đề: ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Logarit !!
Quảng cáo
Trả lời:

Ta có: \[{a^2} + 4{b^2} = 5ab \Leftrightarrow {a^2} + 4ab + 4{b^2} = 9ab \Leftrightarrow {\left( {a + 2b} \right)^2} = 9ab\]
Logarit cơ số 1010 hai vế ta được:
\[\begin{array}{*{20}{l}}{\log {{\left( {a + 2b} \right)}^2} = \log \left( {9ab} \right) \Leftrightarrow 2\log \left( {a + 2b} \right) = \log 9 + \log a + \log b}\\{ \Leftrightarrow 2\log \left( {a + 2b} \right) = 2\log 3 + \log a + \log b \Leftrightarrow 2\left( {\log \left( {a + 2b} \right) - \log 3} \right) = \log a + \log b}\\{ \Leftrightarrow \log \frac{{a + 2b}}{3} = \frac{{\log a + \log b}}{2}}\end{array}\]
Đáp án cần chọn là: C
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.900
B.1350
C.1050
D.1200
Lời giải
Ta có: \[450 = 150.{e^{5r}}\]
\[ = > {e^{5r}} = 3 \Leftrightarrow 5r = \ln 3 = > r = \frac{{\ln 3}}{5}\]
Số lượng vi khuẩn sau 10 giờ tăng trưởng là:
\[S = 150.{e^{10.\frac{{\ln 3}}{5}}} = 150.{\left( {{e^{\ln 3}}} \right)^2} = {150.3^2} = 1350\] (con)
Đáp án cần chọn là: B
Câu 2
A.\[{\log _{12}}80 = \frac{{2{a^2} - 2ab}}{{ab + b}}\]
B.\[{\log _{12}}80 = \frac{{a + 2ab}}{{ab}}\]
C. \[{\log _{12}}80 = \frac{{a + 2ab}}{{ab + b}}\]
D. \[{\log _{12}}80 = \frac{{2{a^2} - 2ab}}{{ab}}\]
Lời giải
Ta có\[80 = {4^2}.5;12 = 3.4\]
\[\begin{array}{*{20}{l}}{{{\log }_{12}}80 = {{\log }_{12}}{4^2} + {{\log }_{12}}5 = 2{{\log }_{12}}4 + {{\log }_{12}}5 = \frac{2}{{{{\log }_4}12}} + \frac{1}{{{{\log }_5}12}} = \frac{2}{{{{\log }_4}3 + 1}} + \frac{1}{{{{\log }_5}3 + {{\log }_5}4}}}\\{ = \frac{2}{{\frac{1}{a} + 1}} + \frac{1}{{\frac{b}{a} + b}} = \frac{{2a}}{{a + 1}} + \frac{a}{{b\left( {a + 1} \right)}} = \frac{{2ab + a}}{{ab + b}}}\end{array}\]
Đáp án cần chọn là: C
Câu 3
A.\[\frac{{2ab}}{{1 + b}}\]
B. \[\frac{{ab}}{{1 + b}}\]
C. \[\frac{a}{{1 + b}}\]
D. \[\frac{b}{{1 + b}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\[\frac{{10}}{{a - 1}}\]
B. \[\frac{2}{{5(a - 1)}}\]
C.\[\frac{5}{{2a - 2}}\]
D. \[\frac{5}{{2a + 1}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\[a > b > c\;\;\;\]
B.\[c > a > b\]
C.\[c > b > a\]
D.\[b > a > c\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\[{\log _2}7 = \frac{a}{{1 - b}}\]
B.\[{\log _2}7 = \frac{b}{{1 - a}}\]
C. \[{\log _2}7 = \frac{a}{{1 + b}}\]
D. \[{\log _2}7 = \frac{b}{{1 + a}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.