Câu hỏi:
28/06/2022 201Cho hàm số: \[f(x) = - 2{x^3} + 3{x^2} + 12x - 5.\]. Trong các mệnh đề sau, tìm mệnh đề sai?
Quảng cáo
Trả lời:
\[f\left( x \right) = - 2{x^3} + 3{x^2} + 12x - 5 \Rightarrow f'\left( x \right) = - 6{x^2} + 6x + 12 = 0 \Leftrightarrow x = 2;x = - 1\]
Ta có: \[y' < 0,\forall x \in \left( { - \infty ; - 1} \right) \cup \left( {2; + \infty } \right)\]nên hàm số nghịch biến trên các khoảng\[\left( { - \infty ; - 1} \right);\left( {2; + \infty } \right)\]và\[y' > 0,\forall x \in \left( { - 1;2} \right)\] nên nó đồng biến trên khoảng (−1;2).</>
Đối chiếu với các đáp án đã cho ta thấy các Đáp án A, B, C đều đúng vì các khoảng đó đều là khoảng nằm trong khoảng nghịch biến hoặc đồng biến của hàm số, chỉ có đáp án D sai.
Đáp án cần chọn là: D
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
TXĐ: D=R
Ta có:\[y' = 3{{\rm{x}}^2} - 6{\rm{x}}\]
\[ \Rightarrow y' = 0 \Leftrightarrow x = 0\]hoặc x=2
Ta có bảng biến thiên
Vậy hàm số đồng biến trên các khoảng \[\left( { - \infty ;0} \right)\]và \[\left( {2; + \infty } \right)\]
Đáp án cần chọn là: B
Lời giải
A, B sai vì hàm số chỉ nghịch biến trên các khoảng \[\left( { - \infty ; - 2} \right)\]và (0;2)
D sai vì hàm số chỉ đồng biến trên khoảng (−2;0) và \[\left( {2; + \infty } \right)\]
C đúng vì giá trị thấp nhất của y trên bảng biến thiên là 0.
Đáp án cần chọn là: C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.