Câu hỏi:
28/06/2022 542Cho hàm số \[y = a{x^3} + b{x^2} + cx + d\] có đồ thị như hình bên:
Giá trị nguyên lớn nhất của tham số m để hàm số \[y = f(|x| - m)\;\] đồng biến trên khoảng \[\left( {10; + \infty } \right)\;\]là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có\[y = f\left( {\left| x \right| - m} \right) = f\left( {\sqrt {{x^2}} - m} \right)\]
\[ \Rightarrow y' = \frac{{2x}}{{2\sqrt {{x^2}} }}f'\left( {\sqrt {{x^2}} - m} \right) = \frac{x}{{\sqrt {{x^2}} }}f'\left( {\sqrt {{x^2}} - m} \right)\]
Để hàm số đồng biến trên\[\left( {10; + \infty } \right)\]thì\[y' \ge 0\,\,\forall x \in \left( {10; + \infty } \right)\]
\[ \Rightarrow \frac{x}{{\sqrt {{x^2}} }}f'\left( {\sqrt {{x^2}} - m} \right) \ge 0\,\,\forall x \in \left( {10; + \infty } \right)\]
\[ \Rightarrow f'\left( {\sqrt {{x^2}} - m} \right) \ge 0\,\,\forall x \in \left( {10; + \infty } \right)\,\,\left( * \right)\]
Dựa vào đồ thị hàm số ta thấy hàm số đồng biến trên \[\left( {1; + \infty } \right)\]và\[\left( { - \infty ; - 1} \right)\]
Do đó (∗)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sqrt {{x^2}} - m \ge 1\forall x \in (10; + \infty )\,\,\,\,(1)}\\{\sqrt {{x^2}} - m \le - 1\forall x \in (10; + \infty )\,\,\,\,(2)}\end{array}} \right.\)
Xét (1) ta có\[m \le \sqrt {{x^2}} - 1\,\,\forall x \in \left( {10; + \infty } \right) \Rightarrow m \le \mathop {\min }\limits_{\left[ {10; + \infty } \right)} \left( {\sqrt {{x^2}} - 1} \right)\]
Xét \[g\left( x \right) = \sqrt {{x^2}} - 1\]trên khoảng\[\left( {10; + \infty } \right)\]ta có
\[g'\left( x \right) = \frac{x}{{\sqrt {{x^2}} }} > 0\,\,\forall x \in \left( {10; + \infty } \right)\]do đó hàm số đồng biến trên\[\left( {10; + \infty } \right)\]
\[ \Rightarrow \mathop {\min }\limits_{\left[ {10; + \infty } \right)} \left( {\sqrt {{x^2}} - 1} \right) = g\left( {10} \right) = 9 \Leftrightarrow m \le 9\]
Xét (2) ta có: \[m \ge \sqrt {{x^2}} + 1\,\,\forall x \in \left( {10; + \infty } \right) \Rightarrow m \ge \mathop {\max }\limits_{\left[ {10; + \infty } \right)} \left( {\sqrt {{x^2}} + 1} \right)\]
Do \[\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2}} + 1} \right) = + \infty \] nên hàm số đã cho không có GTLN trên\[\left[ {10; + \infty } \right)\]do đó không tồn tại m thỏa mãn (2).
Vậy \[m \le 9\] nên giá trị nguyên lớn nhất của m bằng 9.
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=sinx trên đoạn \[[ - \frac{\pi }{2}; - \frac{\pi }{3}]\] lần lượt là
Câu 2:
Cho hàm số \[y = x + \frac{1}{x}.\] Giá trị nhỏ nhất của hàm số trên khoảng \[\left( {0; + \infty } \right)\;\]là:
Câu 3:
Cho hàm số \[y = {x^3} - 3m{x^2} + 6\], giá trị nhỏ nhất của hàm số trên \[\left[ {0;3} \right]\;\]bằng 2 khi:
Câu 4:
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ. Gọi M và m tương ứng là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[y = f(1 - 2cosx)\] trên \[\left[ {0;\frac{{3\pi }}{2}} \right].\]Giá trị của M+m bằng
Câu 5:
Người ta cần chế tạo các món quà lưu niệm bằng đồng có dạng khối chóp tứ giác đều, được mạ vàng bốn mặt bên và có thể tích bằng 16cm3. Diện tích mạ vàng nhỏ nhất của khối chóp bằng bao nhiêu cm2? (Kết quả làm tròn đến hàng đơn vị.)
Câu 6:
Khi xây nhà, cô Ngọc cần xây một bể đựng nước mưa có thể tích V=6m3 dạng hình hộp chữ nhật với chiều dài gấp ba lần chiều rộng, đáy và nắp và các mặt xung quanh đều được đổ bê tông cốt thép. Phần nắp bể để hở một khoảng hình vuông có diện tích bằng \(\frac{2}{9}\) diện tích nắp bể. Biết rằng chi phí cho 1m2 bê tông cốt thép là 1.000.000d. Tính chi phí thấp nhất mà cô Ngọc phải trả khi xây bể (làm tròn đến hàng trăm nghìn và các chữ số viết liền)?
về câu hỏi!