Câu hỏi:
11/07/2024 655Khi xây nhà, cô Ngọc cần xây một bể đựng nước mưa có thể tích V=6m3 dạng hình hộp chữ nhật với chiều dài gấp ba lần chiều rộng, đáy và nắp và các mặt xung quanh đều được đổ bê tông cốt thép. Phần nắp bể để hở một khoảng hình vuông có diện tích bằng \(\frac{2}{9}\) diện tích nắp bể. Biết rằng chi phí cho 1m2 bê tông cốt thép là 1.000.000d. Tính chi phí thấp nhất mà cô Ngọc phải trả khi xây bể (làm tròn đến hàng trăm nghìn và các chữ số viết liền)?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Bước 1: Gọi x(m),3x(m) lần lượt là chiều rộng, chiều dài của bể. Tính chiều cao của bể.
Gọi x(m),3x(m) lần lượt là chiều rộng, chiều dài của bể, h là chiều cao của bể.
Theo bài ra ta có: \[V = x.3x.h = 6 \Rightarrow h = \frac{6}{{3{x^2}}} = \frac{2}{{{x^2}}}\,\,\left( m \right)\]
Bước 2: Tính tổng diện tích các mặt làm bê tông.
Khi đó tổng diện tích các mặt bể được làm bê tông là:
\[2x.\frac{2}{{{x^2}}} + 2.3x.\frac{2}{{{x^2}}} + 2x.3x - x.3x.\frac{2}{9} = \frac{{16{x^2}}}{3} + \frac{{16}}{x}\]
Bước 3: Sử dụng BĐT Cô-si cho 3 số dương để tính số tiền ít nhất cần tìm
Áp dụng BĐT Cô-si ta có:
\[\frac{{16{x^2}}}{3} + \frac{{16}}{x} = \frac{{16{x^2}}}{3} + \frac{8}{x} + \frac{8}{x} \ge 3\sqrt[3]{{\frac{{16{x^2}}}{3}.\frac{8}{x}.\frac{8}{x}}} = 8\sqrt[3]{{18}}\]
Dấu “=” xảy ra khi\[\frac{{16{x^2}}}{3} = \frac{8}{x} \Leftrightarrow x = \sqrt[3]{{\frac{3}{2}}}\]
Vậy số tiền ít nhất mà cô Ngọc cần bỏ ra là \[8\sqrt[3]{{18}}{.10^6} \approx 21.000.000d\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=sinx trên đoạn \[[ - \frac{\pi }{2}; - \frac{\pi }{3}]\] lần lượt là
Câu 2:
Cho hàm số \[y = x + \frac{1}{x}.\] Giá trị nhỏ nhất của hàm số trên khoảng \[\left( {0; + \infty } \right)\;\]là:
Câu 3:
Cho hàm số \[y = {x^3} - 3m{x^2} + 6\], giá trị nhỏ nhất của hàm số trên \[\left[ {0;3} \right]\;\]bằng 2 khi:
Câu 4:
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ. Gọi M và m tương ứng là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[y = f(1 - 2cosx)\] trên \[\left[ {0;\frac{{3\pi }}{2}} \right].\]Giá trị của M+m bằng
Câu 5:
Người ta cần chế tạo các món quà lưu niệm bằng đồng có dạng khối chóp tứ giác đều, được mạ vàng bốn mặt bên và có thể tích bằng 16cm3. Diện tích mạ vàng nhỏ nhất của khối chóp bằng bao nhiêu cm2? (Kết quả làm tròn đến hàng đơn vị.)
Câu 6:
Cho hàm số \[y = a{x^3} + b{x^2} + cx + d\] có đồ thị như hình bên:
Giá trị nguyên lớn nhất của tham số m để hàm số \[y = f(|x| - m)\;\] đồng biến trên khoảng \[\left( {10; + \infty } \right)\;\]là:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!