Câu hỏi:
28/06/2022 172Cho hàm số f(x) liên tục trên \[\left( {0; + \infty } \right)\;\]và thỏa mãn \[2f(x) + xf\left( {\frac{1}{x}} \right) = x\;\] với mọi x>0. Tính \[\mathop \smallint \limits_{\frac{1}{2}}^2 f\left( x \right)dx\].
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: \[2f\left( x \right) + xf\left( {\frac{1}{x}} \right) = x\] với\[x = \frac{1}{t}\]ta có \[2f\left( {\frac{1}{t}} \right) + \frac{1}{t}f\left( t \right) = \frac{1}{t}\]
\[ \Rightarrow f\left( {\frac{1}{t}} \right) = \frac{1}{2}\left( {\frac{1}{t} - \frac{1}{t}f\left( t \right)} \right)\]
\[ \Rightarrow f\left( {\frac{1}{x}} \right) = \frac{1}{2}\left( {\frac{1}{x} - \frac{1}{x}f\left( x \right)} \right)\]
Khi đó ta có
\[\begin{array}{*{20}{l}}{2f\left( x \right) + \frac{1}{2}x\left( {\frac{1}{x} - \frac{1}{x}f\left( x \right)} \right) = x}\\{ \Leftrightarrow 2f\left( x \right) + \frac{1}{2} - \frac{1}{2}f\left( x \right) = x}\\{ \Leftrightarrow \frac{3}{2}f\left( x \right) = x - \frac{1}{2}}\\{ \Leftrightarrow \frac{3}{2}\mathop \smallint \limits_{\frac{1}{2}}^2 f\left( x \right)dx = \mathop \smallint \limits_{\frac{1}{2}}^2 \left( {x - \frac{1}{2}} \right)dx}\\{ \Leftrightarrow \frac{3}{2}\mathop \smallint \limits_{\frac{1}{2}}^2 f\left( x \right)dx = \frac{9}{8} \Leftrightarrow \mathop \smallint \limits_{\frac{1}{2}}^2 f\left( x \right)dx = \frac{3}{4}}\end{array}\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tích phân \[I = \mathop \smallint \limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} \frac{{dx}}{{\sin x}}\] có giá trị bằng
Câu 2:
Nếu \[\mathop \smallint \limits_0^1 \left[ {{f^2}\left( x \right) - f\left( x \right)} \right]dx = 5\]và \[\mathop \smallint \limits_0^1 {\left[ {f\left( x \right) + 1} \right]^2}dx = 36\]thì \(\int\limits_0^1 {f\left( x \right)dx} \) bằng:
Câu 3:
Cho hai tích phân \[I = \mathop \smallint \limits_0^2 {x^3}dx,J = \int\limits_0^2 {xdx} \]. Tìm mối quan hệ giữa I và J
Câu 4:
Nếu \[\mathop \smallint \limits_1^2 \frac{{dx}}{{x + 3}}\]được viết dưới dạng \[ln\frac{a}{b}\;\] với a,b là các số tự nhiên và ước chung lớn nhất của a,b là 1. Chọn khẳng định sai:
Câu 5:
Đặt \[F\left( x \right) = \mathop \smallint \limits_1^x tdt\]. Khi đó F′(x) là hàm số nào dưới đây?
Câu 6:
Tích phân \[I = \mathop \smallint \limits_0^1 \frac{1}{{{x^2} - x - 2}}dx\] có giá trị bằng
Câu 7:
Nếu \[f\left( 1 \right) = 12,f\prime (x)\;\] liên tục và \[\int\limits_1^4 {f\prime (x)dx = 17} \]thì giá trị của f(4) bằng:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
về câu hỏi!