Câu hỏi:

28/06/2022 181

Cho hàm số f(x) liên tục trên \[\left( {0; + \infty } \right)\;\]và thỏa mãn \[2f(x) + xf\left( {\frac{1}{x}} \right) = x\;\] với mọi x>0. Tính \[\mathop \smallint \limits_{\frac{1}{2}}^2 f\left( x \right)dx\].

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \[2f\left( x \right) + xf\left( {\frac{1}{x}} \right) = x\] với\[x = \frac{1}{t}\]ta có \[2f\left( {\frac{1}{t}} \right) + \frac{1}{t}f\left( t \right) = \frac{1}{t}\]

\[ \Rightarrow f\left( {\frac{1}{t}} \right) = \frac{1}{2}\left( {\frac{1}{t} - \frac{1}{t}f\left( t \right)} \right)\]

\[ \Rightarrow f\left( {\frac{1}{x}} \right) = \frac{1}{2}\left( {\frac{1}{x} - \frac{1}{x}f\left( x \right)} \right)\]

Khi đó ta có

\[\begin{array}{*{20}{l}}{2f\left( x \right) + \frac{1}{2}x\left( {\frac{1}{x} - \frac{1}{x}f\left( x \right)} \right) = x}\\{ \Leftrightarrow 2f\left( x \right) + \frac{1}{2} - \frac{1}{2}f\left( x \right) = x}\\{ \Leftrightarrow \frac{3}{2}f\left( x \right) = x - \frac{1}{2}}\\{ \Leftrightarrow \frac{3}{2}\mathop \smallint \limits_{\frac{1}{2}}^2 f\left( x \right)dx = \mathop \smallint \limits_{\frac{1}{2}}^2 \left( {x - \frac{1}{2}} \right)dx}\\{ \Leftrightarrow \frac{3}{2}\mathop \smallint \limits_{\frac{1}{2}}^2 f\left( x \right)dx = \frac{9}{8} \Leftrightarrow \mathop \smallint \limits_{\frac{1}{2}}^2 f\left( x \right)dx = \frac{3}{4}}\end{array}\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tích phân \[I = \mathop \smallint \limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} \frac{{dx}}{{\sin x}}\] có giá trị bằng

Xem đáp án » 28/06/2022 1,211

Câu 2:

Nếu \[\mathop \smallint \limits_0^1 \left[ {{f^2}\left( x \right) - f\left( x \right)} \right]dx = 5\]và \[\mathop \smallint \limits_0^1 {\left[ {f\left( x \right) + 1} \right]^2}dx = 36\]thì \(\int\limits_0^1 {f\left( x \right)dx} \) bằng:

Xem đáp án » 28/06/2022 1,133

Câu 3:

Cho hai tích phân \[I = \mathop \smallint \limits_0^2 {x^3}dx,J = \int\limits_0^2 {xdx} \]. Tìm mối quan hệ giữa I và J

Xem đáp án » 28/06/2022 927

Câu 4:

Nếu \[\mathop \smallint \limits_1^2 \frac{{dx}}{{x + 3}}\]được viết dưới dạng \[ln\frac{a}{b}\;\] với a,b là các số tự nhiên và ước chung lớn nhất của a,b là 1. Chọn khẳng định sai:

Xem đáp án » 28/06/2022 846

Câu 5:

Đặt \[F\left( x \right) = \mathop \smallint \limits_1^x tdt\]. Khi đó F′(x) là hàm số nào dưới đây?

Xem đáp án » 28/06/2022 647

Câu 6:

Tích phân \[I = \mathop \smallint \limits_0^1 \frac{1}{{{x^2} - x - 2}}dx\] có giá trị bằng

Xem đáp án » 28/06/2022 549

Câu 7:

Giả sử A,B là các hằng số của hàm số \[f(x) = Asin\pi x + B{x^2}\] Biết \[\mathop \smallint \limits_0^2 f\left( x \right)dx = 4\]giá trị của B là:

Xem đáp án » 28/06/2022 501

Bình luận


Bình luận