Câu hỏi:

28/06/2022 219

Giá trị của tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {{{\sin }^4}x + {{\cos }^4}x} \right)\left( {{{\sin }^6}x + {{\cos }^6}x} \right)dx\] là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

\[\left( {{{\sin }^4}x + {{\cos }^4}x} \right)\left( {{{\sin }^6}x + {{\cos }^6}x} \right)\]

\[ = \left[ {{{\left( {{{\sin }^2}x + {{\cos }^2}x} \right)}^2} - 2{{\sin }^2}x{{\cos }^2}x} \right]\]

\[\left[ {{{\left( {{{\sin }^2}x + {{\cos }^2}x} \right)}^3} - 3{{\sin }^2}x{{\cos }^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)} \right]\]

\[ = \left( {1 - \frac{1}{2}{{\sin }^2}2x} \right)\left( {1 - \frac{3}{4}{{\sin }^2}2x} \right) = 1 - \frac{5}{4}{\sin ^2}2x + \frac{3}{8}{\left( {{{\sin }^2}2x} \right)^2}\]

\[ = 1 - \frac{5}{4}.\frac{{1 - \cos 4x}}{2} + \frac{3}{8}.{\left( {\frac{{1 - \cos 4x}}{2}} \right)^2}\]

\[ = \frac{3}{8} + \frac{5}{8}\cos 4x + \frac{3}{{32}}\left( {1 - 2\cos 4x + {{\cos }^2}4x} \right) = \frac{{15}}{{32}} + \frac{7}{{16}}\cos 4x + \frac{3}{{32}}{\cos ^2}4x\]

\[ = \frac{{15}}{{32}} + \frac{7}{{16}}\cos 4x + \frac{3}{{32}}.\frac{{1 + \cos 8x}}{2} = \frac{{33}}{{64}} + \frac{7}{{16}}\cos 4x + \frac{3}{{64}}\cos 8x\]

Do đó\[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\frac{{33}}{{64}} + \frac{7}{{16}}\cos 4x + \frac{3}{{64}}\cos 8x} \right)dx\]

\[ = \frac{{33}}{{64}}x\left| {_0^{\frac{\pi }{2}}} \right. + \frac{7}{{64}}sin4x\left| {_0^{\frac{\pi }{2}}} \right. + \frac{3}{{512}}sin8x\left| {_0^{\frac{\pi }{2}}} \right. = = \frac{{33}}{{128}}\pi \]

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Cách 1:

\[\begin{array}{l}I = \mathop \smallint \limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} \frac{{dx}}{{\sin x}}\\ = \mathop \smallint \limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} \frac{{\left( {co{s^2}\frac{x}{2} + si{n^2}\frac{x}{2}} \right)}}{{2sin\frac{x}{2}cos\frac{x}{2}}}dx\\ = \frac{1}{2}\mathop \smallint \limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} \left( {cot\frac{x}{2} + tan\frac{x}{2}} \right)dx\\ = \left[ {\ln \left| {sin\frac{x}{2}} \right| - \ln \left| {cos\frac{x}{2}} \right|} \right]\left| {_{\frac{\pi }{3}}^{\frac{\pi }{2}}} \right.\\ = \left[ {\ln \frac{{\sqrt 2 }}{2} - \ln \frac{{\sqrt 2 }}{2}} \right] - \left[ {\ln \frac{1}{2} - \ln \frac{{\sqrt 3 }}{2}} \right]\\ = \ln \sqrt 3 \end{array}\]

Cách 2:

Bước 1: Dùng máy tính như hình dưới, thu được giá trị 0,549306...

Tích phân I = nguyên hàm từ pi/3 đến pi/2 dx/sin x   có giá trị bằng (ảnh 1)

Bước 2: Lấy\[{e^{0,549306...}}\]cho kết quả \[1,732050808... \approx \sqrt 3 \]Chọn\[\frac{1}{2}\ln 3\]

Tích phân I = nguyên hàm từ pi/3 đến pi/2 dx/sin x   có giá trị bằng (ảnh 2)

Cách 3:

Thực hiện các phép tính sau trên máy tính (đến khi thu được kết quả bằng 0 thì ngưng)

Tích phân I = nguyên hàm từ pi/3 đến pi/2 dx/sin x   có giá trị bằng (ảnh 3)

Chọn \[\frac{1}{2}\ln 3\]

Đáp án cần chọn là: C

Câu 2

Lời giải

\[I = \mathop \smallint \limits_2^5 \frac{{dx}}{x} = ln|x|\left| {_2^5} \right. = ln5 - ln2 = ln\frac{5}{2}\]

Đáp án cần chọn là: C

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP