Câu hỏi:
28/06/2022 111Biết rằng \[\mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{\cos 2x}}{{{{\left( {\sin x - \cos x + 3} \right)}^2}}}dx = a + \ln b\] với a,b là các số hữu tỉ. Giá trị của 2a+3b bằng
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Ta có
\[I = \mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{\cos 2x}}{{{{\left( {\sin x - \cos x + 3} \right)}^2}}}dx = \mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\left( {\sin x - \cos x + 3} \right)}^2}}}dx = \mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)}}{{{{\left( {\sin x - \cos x + 3} \right)}^2}}}dx\]
Đặt\[sinx - cosx + 3 = t \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{(cosx + sinx)dx = dt}\\{cosx - sinx = 3 - t}\end{array}} \right.\]
Đổi cận\[x = 0 \Rightarrow t = 2;\,x = \frac{\pi }{4} \Rightarrow t = 3\]
Suy ra
\(I = \int\limits_2^3 {\frac{{(3 - t)dt}}{{{t^2}}}} = \int\limits_2^3 {\left( {\frac{3}{{{t^2}}} - \frac{1}{t}} \right)} dt = \left( { - \frac{3}{t} - \ln \left| t \right|} \right)\left| {_2^3} \right. = \frac{1}{2} + ln2 - ln3 = \frac{1}{2} + ln\frac{2}{3}\)
Hay \[a = \frac{1}{2};b = \frac{2}{3} \Rightarrow 2a + 3b = 3.\]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Nếu \[\mathop \smallint \limits_0^1 \left[ {{f^2}\left( x \right) - f\left( x \right)} \right]dx = 5\]và \[\mathop \smallint \limits_0^1 {\left[ {f\left( x \right) + 1} \right]^2}dx = 36\]thì \(\int\limits_0^1 {f\left( x \right)dx} \) bằng:
Câu 2:
Tích phân \[I = \mathop \smallint \limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} \frac{{dx}}{{\sin x}}\] có giá trị bằng
Câu 3:
Nếu \[\mathop \smallint \limits_1^2 \frac{{dx}}{{x + 3}}\]được viết dưới dạng \[ln\frac{a}{b}\;\] với a,b là các số tự nhiên và ước chung lớn nhất của a,b là 1. Chọn khẳng định sai:
Câu 4:
Cho hai tích phân \[I = \mathop \smallint \limits_0^2 {x^3}dx,J = \int\limits_0^2 {xdx} \]. Tìm mối quan hệ giữa I và J
Câu 5:
Đặt \[F\left( x \right) = \mathop \smallint \limits_1^x tdt\]. Khi đó F′(x) là hàm số nào dưới đây?
Câu 6:
Nếu \[f\left( 1 \right) = 12,f\prime (x)\;\] liên tục và \[\int\limits_1^4 {f\prime (x)dx = 17} \]thì giá trị của f(4) bằng:
Câu 7:
Tích phân \[I = \mathop \smallint \limits_0^1 \frac{1}{{{x^2} - x - 2}}dx\] có giá trị bằng
về câu hỏi!