Câu hỏi:
28/06/2022 233Một ô tô đang đứng và bắt đầu chuyển động theo một đường thẳng với gia tốc \[a\left( t \right) = 6 - 3t\,\,\left( {m/{s^2}} \right)\] trong đó t là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là:
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Ta có\[v\left( t \right) = \smallint a\left( t \right)dt = \smallint \left( {6 - 3t} \right)dt = 6t - \frac{{3{t^2}}}{2} + C\]
Theo bài ra ta có: Ô tô đang đứng yên và bắt đầu chuyển động, do đó\[v\left( 0 \right) = 0\]
\[ \Rightarrow C = 0\]
Khi đó ta có\[v\left( t \right) = 6t - \frac{3}{2}{t^2}\] đây là một parabol có bề lõm hướng xuống, đạt giá trị lớn nhất tại\[t = \frac{{ - b}}{{2a}} = \frac{{ - 6}}{{2.\left( { - \frac{3}{2}} \right)}} = 2\]
Vậy quãng đường ô tô đi được từ khi chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là:\[S = \mathop \smallint \limits_0^2 v\left( t \right)dt = \mathop \smallint \limits_0^2 \left( {6t - \frac{3}{2}{t^2}} \right)dt = 8\,\,\left( m \right).\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tích phân \[I = \mathop \smallint \limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} \frac{{dx}}{{\sin x}}\] có giá trị bằng
Câu 2:
Nếu \[\mathop \smallint \limits_0^1 \left[ {{f^2}\left( x \right) - f\left( x \right)} \right]dx = 5\]và \[\mathop \smallint \limits_0^1 {\left[ {f\left( x \right) + 1} \right]^2}dx = 36\]thì \(\int\limits_0^1 {f\left( x \right)dx} \) bằng:
Câu 3:
Cho hai tích phân \[I = \mathop \smallint \limits_0^2 {x^3}dx,J = \int\limits_0^2 {xdx} \]. Tìm mối quan hệ giữa I và J
Câu 4:
Nếu \[\mathop \smallint \limits_1^2 \frac{{dx}}{{x + 3}}\]được viết dưới dạng \[ln\frac{a}{b}\;\] với a,b là các số tự nhiên và ước chung lớn nhất của a,b là 1. Chọn khẳng định sai:
Câu 5:
Đặt \[F\left( x \right) = \mathop \smallint \limits_1^x tdt\]. Khi đó F′(x) là hàm số nào dưới đây?
Câu 6:
Tích phân \[I = \mathop \smallint \limits_0^1 \frac{1}{{{x^2} - x - 2}}dx\] có giá trị bằng
Câu 7:
Nếu \[f\left( 1 \right) = 12,f\prime (x)\;\] liên tục và \[\int\limits_1^4 {f\prime (x)dx = 17} \]thì giá trị của f(4) bằng:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!