Câu hỏi:

28/06/2022 179

Cho hàm số y=f(x) nhận giá trị không âm và liên tục trên đoạn \[\left[ {0;1} \right].\;\]Đặt \[g\left( x \right) = 1 + 2\mathop \smallint \limits_0^x f\left( t \right)dt\].  Biết \[g\left( x \right) \ge {\left[ {f\left( x \right)} \right]^3}\] với mọi \[x \in \left[ {0;1} \right].\] Tích phân \[\mathop \smallint \limits_0^1 \sqrt[3]{{{{\left[ {g\left( x \right)} \right]}^2}}}\,dx\]có giá trị lớn nhất bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có\[g\left( x \right) = 1 + 2\mathop \smallint \limits_0^x f\left( t \right)dt\]suy ra\(\left\{ {\begin{array}{*{20}{c}}{g(x) - 1 = 2\int\limits_0^2 {f(t)dt} }\\{g(0) = 1 + \int\limits_0^0 {f(t)dt} }\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{g\prime (x) = 2f(x) \Rightarrow f(x) = \frac{{g\prime (x)}}{2}}\\{g(0) = 1}\end{array}} \right.\)

\[g\left( x \right) \ge {\left[ {f\left( x \right)} \right]^3} \Leftrightarrow g\left( x \right) \ge {\left[ {\frac{{g'\left( x \right)}}{2}} \right]^3} \Leftrightarrow \sqrt[3]{{g\left( x \right)}} \ge \frac{{g'\left( x \right)}}{2} \Leftrightarrow \frac{{g'\left( x \right)}}{{\sqrt[3]{{g\left( x \right)}}}} \le 2\]

Với\[t \in \left[ {0;1} \right]\]Lấy tích phân hai vế ta được

\(\int\limits_0^t {\frac{{g\prime (x)}}{{\sqrt[3]{{g\left( x \right)}}}}} dx \le \int\limits_0^t {2dx} \)

\(\begin{array}{l} \Leftrightarrow \int\limits_0^t {{{[g(x)]}^{\frac{{ - 1}}{3}}}} d(g(x)) \le 2t\\ \Leftrightarrow 2t \ge 32{[g(x)]^{\frac{2}{3}}}\left| {_0^t} \right.\\ \Leftrightarrow \frac{4}{3}t \ge \sqrt[3]{{{g^2}(t)}} - \sqrt[3]{{{g^2}(0)}}\end{array}\)

Mà\[g\left( 0 \right) = 1\] nên\[\sqrt[3]{{{g^2}\left( t \right)}} \le \frac{4}{3}t + 1 \Rightarrow \sqrt[3]{{{g^2}\left( x \right)}} \le \frac{4}{3}x + 1\]

Từ đó ta có\[\mathop \smallint \limits_0^1 \sqrt[3]{{{g^2}\left( x \right)}}\,dx \le \mathop \smallint \limits_0^1 \left( {\frac{4}{3}x + 1} \right)dx\]

\( \Leftrightarrow \int\limits_0^1 {\sqrt[3]{{{g^2}(x)}}} dx \le \left( {\frac{2}{3}{x^2} + x} \right)\left| {_0^1} \right.\)

\( \Leftrightarrow \int\limits_0^1 {\sqrt[3]{{{g^2}(x)}}} dx \le \frac{5}{2}\)

Hay giá trị lớn nhất cần tìm là\[\frac{5}{3}.\]

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nếu \[\mathop \smallint \limits_0^1 \left[ {{f^2}\left( x \right) - f\left( x \right)} \right]dx = 5\]và \[\mathop \smallint \limits_0^1 {\left[ {f\left( x \right) + 1} \right]^2}dx = 36\]thì \(\int\limits_0^1 {f\left( x \right)dx} \) bằng:

Xem đáp án » 28/06/2022 1,018

Câu 2:

Tích phân \[I = \mathop \smallint \limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} \frac{{dx}}{{\sin x}}\] có giá trị bằng

Xem đáp án » 28/06/2022 1,000

Câu 3:

Nếu \[\mathop \smallint \limits_1^2 \frac{{dx}}{{x + 3}}\]được viết dưới dạng \[ln\frac{a}{b}\;\] với a,b là các số tự nhiên và ước chung lớn nhất của a,b là 1. Chọn khẳng định sai:

Xem đáp án » 28/06/2022 702

Câu 4:

Cho hai tích phân \[I = \mathop \smallint \limits_0^2 {x^3}dx,J = \int\limits_0^2 {xdx} \]. Tìm mối quan hệ giữa I và J

Xem đáp án » 28/06/2022 675

Câu 5:

Đặt \[F\left( x \right) = \mathop \smallint \limits_1^x tdt\]. Khi đó F′(x) là hàm số nào dưới đây?

Xem đáp án » 28/06/2022 576

Câu 6:

Nếu \[f\left( 1 \right) = 12,f\prime (x)\;\] liên tục và \[\int\limits_1^4 {f\prime (x)dx = 17} \]thì giá trị của f(4) bằng:

Xem đáp án » 28/06/2022 449

Câu 7:

Tích phân \[I = \mathop \smallint \limits_0^1 \frac{1}{{{x^2} - x - 2}}dx\] có giá trị bằng

Xem đáp án » 28/06/2022 427

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store