Câu hỏi:
28/06/2022 247Cho hàm số y=f(x) nhận giá trị không âm và liên tục trên đoạn \[\left[ {0;1} \right].\;\]Đặt \[g\left( x \right) = 1 + 2\mathop \smallint \limits_0^x f\left( t \right)dt\]. Biết \[g\left( x \right) \ge {\left[ {f\left( x \right)} \right]^3}\] với mọi \[x \in \left[ {0;1} \right].\] Tích phân \[\mathop \smallint \limits_0^1 \sqrt[3]{{{{\left[ {g\left( x \right)} \right]}^2}}}\,dx\]có giá trị lớn nhất bằng
Câu hỏi trong đề: ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Tích phân !!
Quảng cáo
Trả lời:
Ta có\[g\left( x \right) = 1 + 2\mathop \smallint \limits_0^x f\left( t \right)dt\]suy ra\(\left\{ {\begin{array}{*{20}{c}}{g(x) - 1 = 2\int\limits_0^2 {f(t)dt} }\\{g(0) = 1 + \int\limits_0^0 {f(t)dt} }\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{g\prime (x) = 2f(x) \Rightarrow f(x) = \frac{{g\prime (x)}}{2}}\\{g(0) = 1}\end{array}} \right.\)
Mà
\[g\left( x \right) \ge {\left[ {f\left( x \right)} \right]^3} \Leftrightarrow g\left( x \right) \ge {\left[ {\frac{{g'\left( x \right)}}{2}} \right]^3} \Leftrightarrow \sqrt[3]{{g\left( x \right)}} \ge \frac{{g'\left( x \right)}}{2} \Leftrightarrow \frac{{g'\left( x \right)}}{{\sqrt[3]{{g\left( x \right)}}}} \le 2\]
Với\[t \in \left[ {0;1} \right]\]Lấy tích phân hai vế ta được
\(\int\limits_0^t {\frac{{g\prime (x)}}{{\sqrt[3]{{g\left( x \right)}}}}} dx \le \int\limits_0^t {2dx} \)
\(\begin{array}{l} \Leftrightarrow \int\limits_0^t {{{[g(x)]}^{\frac{{ - 1}}{3}}}} d(g(x)) \le 2t\\ \Leftrightarrow 2t \ge 32{[g(x)]^{\frac{2}{3}}}\left| {_0^t} \right.\\ \Leftrightarrow \frac{4}{3}t \ge \sqrt[3]{{{g^2}(t)}} - \sqrt[3]{{{g^2}(0)}}\end{array}\)
Mà\[g\left( 0 \right) = 1\] nên\[\sqrt[3]{{{g^2}\left( t \right)}} \le \frac{4}{3}t + 1 \Rightarrow \sqrt[3]{{{g^2}\left( x \right)}} \le \frac{4}{3}x + 1\]
Từ đó ta có\[\mathop \smallint \limits_0^1 \sqrt[3]{{{g^2}\left( x \right)}}\,dx \le \mathop \smallint \limits_0^1 \left( {\frac{4}{3}x + 1} \right)dx\]
\( \Leftrightarrow \int\limits_0^1 {\sqrt[3]{{{g^2}(x)}}} dx \le \left( {\frac{2}{3}{x^2} + x} \right)\left| {_0^1} \right.\)
\( \Leftrightarrow \int\limits_0^1 {\sqrt[3]{{{g^2}(x)}}} dx \le \frac{5}{2}\)
Hay giá trị lớn nhất cần tìm là\[\frac{5}{3}.\]
Đáp án cần chọn là: B
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cách 1:
\[\begin{array}{l}I = \mathop \smallint \limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} \frac{{dx}}{{\sin x}}\\ = \mathop \smallint \limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} \frac{{\left( {co{s^2}\frac{x}{2} + si{n^2}\frac{x}{2}} \right)}}{{2sin\frac{x}{2}cos\frac{x}{2}}}dx\\ = \frac{1}{2}\mathop \smallint \limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} \left( {cot\frac{x}{2} + tan\frac{x}{2}} \right)dx\\ = \left[ {\ln \left| {sin\frac{x}{2}} \right| - \ln \left| {cos\frac{x}{2}} \right|} \right]\left| {_{\frac{\pi }{3}}^{\frac{\pi }{2}}} \right.\\ = \left[ {\ln \frac{{\sqrt 2 }}{2} - \ln \frac{{\sqrt 2 }}{2}} \right] - \left[ {\ln \frac{1}{2} - \ln \frac{{\sqrt 3 }}{2}} \right]\\ = \ln \sqrt 3 \end{array}\]
Cách 2:
Bước 1: Dùng máy tính như hình dưới, thu được giá trị 0,549306...
Bước 2: Lấy\[{e^{0,549306...}}\]cho kết quả \[1,732050808... \approx \sqrt 3 \]Chọn\[\frac{1}{2}\ln 3\]
Cách 3:
Thực hiện các phép tính sau trên máy tính (đến khi thu được kết quả bằng 0 thì ngưng)
Chọn \[\frac{1}{2}\ln 3\]
Đáp án cần chọn là: C
Lời giải
Đáp án cần chọn là: C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.