Câu hỏi:
28/06/2022 195Gọi SS là diện tích hình phẳng (H) giới hạn bởi các đường y=f(x), trục hoành và hai đường thẳng x=−1,x=2 (như hình vẽ). Đặt \[a = \mathop \smallint \limits_{ - 1}^0 f(x)dx,b = \mathop \smallint \limits_0^2 f(x)dx\]. Mệnh đề nào sau đây đúng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Diện tích hình phẳng là \[\mathop \smallint \limits_{ - 1}^2 \left| {f(x)} \right|dx\]
Dựa vào hình vẽ ta có được:
\[S = \mathop \smallint \limits_{ - 1}^0 (0 - f(x))dx + \mathop \smallint \limits_0^2 f(x)dx = - \mathop \smallint \limits_{ - 1}^0 f(x)dx + \mathop \smallint \limits_0^2 f(x)dx = b - a\]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai hàm số \[f\left( x \right) = m{x^3} + n{x^2} + px - \frac{5}{2}\left( {m,n,p \in \mathbb{R}} \right)\]và\(g\left( x \right) = {x^2} + 3x - 1\) có đồ thị cắt nhau tại ba điểm có hoành độ lần lượt là −3;−1;1( tham khảo hình vẽ bên). Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số f(x)và g(x) bằng
Câu 2:
Tính diện tích hình phẳng giới hạn bởi hai đường: \[y = \left| {{x^2} - 4x + 3} \right|\,\,\,;\,\,y = x + 3\]
Câu 3:
Cho đồ thị hàm số y=f(x) như hình vẽ dưới đây. Diện tích S của hình phẳng (phần gạch chéo) được xác định bởi
Câu 4:
Sàn của một viện bảo tàng mỹ thuật được lát bằng những viên gạch hình vuông cạnh 40(cm) như hình bên. Biết rằng người thiết kế đã sử dụng các đường cong có phương trình \[4{x^2} = {y^4}\;\] và \[4{(|x| - 1)^3} = {y^2}\;\] để tạo hoa văn cho viên gạch. Diện tích phần được tô đậm gần nhất với giá trị nào dưới đây?
Câu 5:
Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \[y = f\left( x \right),y = g\left( x \right)\] và hai đường thẳng \[x = a,x = b(a < b)\;\] là:
Câu 6:
Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số \[y = {x^2} - 4\;\] và \[y = x - 4\]
Câu 7:
Diện tích hình phẳng giới hạn bởi nửa đường tròn \[{x^2} + {y^2} = 2,y > 0\] và parabol \[y = {x^2}\;\] bằng:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
về câu hỏi!