Câu hỏi:
28/06/2022 307Trong Công viên Toán học có những mảnh đất hình dáng khác nhau. Mỗi mảnh được trồng một loài hoa và nó được tạo thành bởi một trong những đường cong đẹp nhất trong toán học. Ở đó có mảnh đất mang tên Bernoulli, nó được tạo thành từ đường Lemniscate có phương trình trong hệ tọa độ Oxy là \[16{y^2} = {x^2}(25 - {x^2})\;\]như hình vẽ bên. Tính diện tích S của mảnh đất Bernoulli biết rằng mỗi đơn vị trong hệ trục tọa độ Oxy tương ứng với chiều dài 1 mét
Hoành độ giao điểm của đồ thị với trục hoành là\[x = 0;x = 5;x = - 5\]
Ta thấy diện tích mảnh đất Bernoulli bao gồm diện tích 44 mảnh đất nhỏ bằng nhau.
Xét diện tích S mảnh đất nhỏ trong góc phần tư thứ nhất ta có
\[\begin{array}{*{20}{l}}{4y = x\sqrt {25 - {x^2}} ;x \in \left[ {0;5} \right]}\\{ \Rightarrow S = \frac{1}{4}\mathop \smallint \limits_0^5 x\sqrt {25 - {x^2}} d{\rm{x}} = \frac{{125}}{{12}}}\\{ \Rightarrow S = 4.\frac{{125}}{{12}} = \frac{{125}}{3}\left( {{m^2}} \right)}\end{array}\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai hàm số \[f\left( x \right) = m{x^3} + n{x^2} + px - \frac{5}{2}\left( {m,n,p \in \mathbb{R}} \right)\]và\(g\left( x \right) = {x^2} + 3x - 1\) có đồ thị cắt nhau tại ba điểm có hoành độ lần lượt là −3;−1;1( tham khảo hình vẽ bên). Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số f(x)và g(x) bằng
Câu 2:
Tính diện tích hình phẳng giới hạn bởi hai đường: \[y = \left| {{x^2} - 4x + 3} \right|\,\,\,;\,\,y = x + 3\]
Câu 3:
Cho đồ thị hàm số y=f(x) như hình vẽ dưới đây. Diện tích S của hình phẳng (phần gạch chéo) được xác định bởi
Câu 4:
Sàn của một viện bảo tàng mỹ thuật được lát bằng những viên gạch hình vuông cạnh 40(cm) như hình bên. Biết rằng người thiết kế đã sử dụng các đường cong có phương trình \[4{x^2} = {y^4}\;\] và \[4{(|x| - 1)^3} = {y^2}\;\] để tạo hoa văn cho viên gạch. Diện tích phần được tô đậm gần nhất với giá trị nào dưới đây?
Câu 5:
Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \[y = f\left( x \right),y = g\left( x \right)\] và hai đường thẳng \[x = a,x = b(a < b)\;\] là:
Câu 6:
Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số \[y = {x^2} - 4\;\] và \[y = x - 4\]
Câu 7:
Diện tích hình phẳng giới hạn bởi nửa đường tròn \[{x^2} + {y^2} = 2,y > 0\] và parabol \[y = {x^2}\;\] bằng:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
về câu hỏi!