Câu hỏi:
28/06/2022 356Đề thi THPT QG - 2021 - mã 101
Cho hàm số \[f(x) = {x^3} + a{x^2} + bx + c\;\] với a,b,c là các số thực. Biết hàm số \[g(x) = f(x) + f\prime (x) + f\prime \prime (x)\;\] có hai giá trị cực trị là −3 và 6. Diện tích hình phẳng giới hạn bởi các đường \[y = \frac{{f(x)}}{{g(x) + 6}}\;v\`a \;y = 1\] bằng
Quảng cáo
Trả lời:
* Xét phương trình hoành độ giao điểm:
\[\frac{{f\left( x \right)}}{{g\left( x \right) + 6}} = 1 \Leftrightarrow f\left( x \right) = g\left( x \right) + 6 \Leftrightarrow f\left( x \right) - g\left( x \right) - 6 = 0\]
(Chúng ta không cần lo điều kiện\[g\left( x \right) + 6 \ne 0\] bởi lẽ đồ thị hàm số \[y = \frac{{f\left( x \right)}}{{g\left( x \right) + 6}}\] khi tương giao với đường thẳng\[y = 1\] phải tạo nên một miền kín, và khi số nghiệm của phương trình\[f\left( x \right) = g\left( x \right) + 6\] nhiều hơn 2 thì ta mới phải chú ý xem xét lấy cận từ đâu đến đâu, và liệu rằng có phải từ\[{x_{\min }} \to {x_{\max }}\] chẳng may đồ thị tương giao bị gián đoạn trên đoạn\[\left[ {{x_{\min }};{x_{\max }}} \right]\] mà vẫn tạo miền kín. Trên thực tế, bài toán này phương trình\[f\left( x \right) = g\left( x \right) + 6\] chỉ có 2 nghiệm (vì là phương trình bậc hai), nên người giải toán không cần quan tâm đến việc gián đoạn hay không, vì việc tồn tại nghiệm hình và hàm số là thuộc phạm trù người ra đề).
Mà\[g\left( x \right) = f\left( x \right) + f'\left( x \right) + f''\left( x \right) \Rightarrow f\left( x \right) - g\left( x \right) = - f'\left( x \right) - f''\left( x \right)\]
⇒⇒ Phương trình hoành độ giao điểm trở thành:
\[ - f'\left( x \right) - f''\left( x \right) - 6 = 0 \Leftrightarrow f'\left( x \right) + f''\left( x \right) + 6 = 0\](1)
Mặt khác:\[g'\left( x \right) = f'\left( x \right) + f''\left( x \right) + f'''\left( x \right)\] và\[f'''\left( x \right) = 6\]
\[ \Rightarrow g'\left( x \right) = f'\left( x \right) + f''\left( x \right) + 6\]
Từ phương trình (1)\[ \Leftrightarrow g'\left( x \right) = 0\]
Theo giả thiết g(x) có 2 điểm cực trị\[{x_1},\,\,{x_2}\] sao cho\(\left\{ {\begin{array}{*{20}{c}}{g({x_1}) = - 3}\\{g({x_2}) = 6}\end{array}} \right. \Rightarrow g'\left( x \right) = 0\) có 2 nghiệm\[{x_1},\,\,{x_2}\]
Vậy phương trình hoành độ giao điểm có 2 nghiệm\[{x_1},\,\,{x_2}\]
\[ \Rightarrow {S_{\left( H \right)}} = \left| {\int\limits_{{x_1}}^{{x_2}} {\left( {\frac{{f(x)}}{{g(x) + 6}} - 1} \right)dx} } \right|\]
\[\begin{array}{l} = \left| {\int\limits_{{x_1}}^{{x_2}} {\frac{{f(x) - g(x) - 6}}{{g(x) + 6}}dx} } \right|\\ = \left| {\int\limits_{{x_1}}^{{x_2}} {\frac{{ - f\prime (x) - f\prime \prime (x) - 6}}{{g(x) + 6}}dx} } \right|\\ = \left| {\int\limits_{{x_1}}^{{x_2}} {\frac{{ - g\prime (x)}}{{g(x) + 6}}dx} } \right|\end{array}\]
\[ = \left| {\int\limits_{{x_1}}^{{x_2}} {\frac{{g\prime (x)}}{{g(x) + 6}}dx} } \right|\]
\[ = \left| {\int\limits_{{x_1}}^{{x_2}} {\frac{{d(g(x) + 6)}}{{g(x) + 6}}dx} } \right|\]
\[\begin{array}{l} = \mid ln|g(x) + 6||_{{x_1}}^{{x_2}}\mid \\ = |ln|g({x_2}) + 6| - ln|g({x_1}) + 6||\\ = |ln|6 + 6| - ln| - 3 + 6|| = ln12 - ln3 = 2ln2\end{array}\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gắn hệ trục tọa độ như hình vẽ.
Diện tích phần tô đậm là
\[S = 4\left[ {\mathop \smallint \limits_0^1 \left( {\sqrt {2x} - 0} \right)dx + \mathop \smallint \limits_1^2 \left( {\sqrt {2x} - 2\sqrt {{{\left( {x - 1} \right)}^3}} } \right)dx} \right] = \frac{{112}}{{15}}\,\,\left( {d{m^2}} \right) \approx 747\,\,\left( {c{m^2}} \right)\]
Đáp án cần chọn là: B
Lời giải
Gọi H là trung điểm của BC.
\[\begin{array}{*{20}{l}}{{S_1} = \frac{4}{3}Rh = \frac{4}{3}.HC.OH = \frac{4}{3}.2.2 = \frac{{16}}{3}\,{m^2}.}\\{{S_{ABCD}} = {4^2} = 16}\\{ \Rightarrow {S_2} = {S_{ABCD}} - {S_1} = 16 - \frac{{16}}{3} = \frac{{32}}{3}\,\,{m^2}.}\\{ \Rightarrow \frac{{{S_1}}}{{{S_2}}} = \frac{{16}}{3}:\frac{{32}}{3} = \frac{1}{2}.}\end{array}\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)