Cho số phức z thỏa mãn \[\left| {z - 2 - 2i} \right| = 1\]. Số phức z−i có mô đun nhỏ nhất là:
A.\[\sqrt 5 - 1\]
B. \[1 - \sqrt 5 \]
C. \[\sqrt 5 + 1\]
D. \[\sqrt 5 + 2\]
Quảng cáo
Trả lời:

Ta có:
\[\left| {z - i} \right| = \left| {\left( {z - 2 - 2i} \right) + \left( {i + 2} \right)} \right| \ge \left| {\left| {z - 2 - 2i} \right| - \left| {i + 2} \right|} \right| = \left| {1 - \sqrt 5 } \right| = \sqrt 5 - 1\]
Vậy\[\left| {z - i} \right| \ge \sqrt 5 - 1\]nên\[\min \left| {z - i} \right| = \sqrt 5 - 1\]
Đáp án cần chọn là: A
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo bất đẳng thức chứa dấu giá trị tuyệt đối ta có
\[|z + 2 + i| = |(z - 1 - 2i) + (3 + 3i)| \ge ||z - 1 - 2i| - |3 + 3i|| = |4 - 3\sqrt 2 | = 3\sqrt 2 - 4 = m\]
\[|z + 2 + i| = |(z - 1 - 2i) + (3 + 3i)| \le |z - 1 - 2i| + |3 + 3i| = 4 + 3\sqrt 2 = M\]
Suy ra
\[{M^2} + {m^2} = {(3\sqrt 2 - 4)^2} + {(4 + 3\sqrt 2 )^2} = 2({4^2} + {(3\sqrt 2 )^2}) = 68\]
Đáp án cần chọn là: C
Câu 2
A.\[16 + \sqrt {74} \]
B. \[2 + \sqrt {130} \]
C. \[4 + \sqrt {74} \]
D. \[4 + \sqrt {130} \]
Lời giải
Ta có\[|z - 3 + 4i| = 2 \Leftrightarrow |2z - 6 + 8i| = 4.\]
Theo bất đẳng thức chứa dấu giá trị tuyệt đối có
\[4 = |2z - 6 + 8i| = |(2z + 1 - i) - (7 - 9i)| \ge |2z + 1 - i| - |7 - 9i| = |w| - \sqrt {130} \]
\[ \Rightarrow |w| - \sqrt {130} \le 4 \Rightarrow |w| \le 4 + \sqrt {130} \]
Đáp án cần chọn là: D
Câu 3
A.\[\frac{{\sqrt {221} }}{5}.\]
B. \[\sqrt 5 \]
C. 3
D. \[\frac{{\sqrt {29} }}{5}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.\[\left| {{z_1} + {z_2}} \right| \le \left| {{z_1}} \right| + \left| {{z_2}} \right|\]
B. \[\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right|\]
C. \[\left| {{z_1} + {z_2}} \right| \ge \left| {{z_1}} \right| + \left| {{z_2}} \right|\]
D. \[\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right| + \left| {{z_1} - {z_2}} \right|\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.z=1+i
B.z=3+i
C.z=3+3i
D.z=1+3i
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.2 và 5
B.1 và 6
C.2 và 6
D.1 và 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.