Bài toán tìm số phức thỏa mãn điều kiện cho trước

  • 683 lượt thi

  • 15 câu hỏi

  • 30 phút

Câu 1:

Với hai số phức bất kì \[{z_1},{z_2}\], khẳng định nào sau đây đúng:

Xem đáp án
Ta có:\[\left| {\left| {{z_1}} \right| - \left| {{z_2}} \right|} \right| \le \left| {{z_1} \pm {z_2}} \right| \le \left| {{z_1}} \right| + \left| {{z_2}} \right|\]  nên A đúng.

Đáp án cần chọn là: A


Câu 2:

Cho số phức z thỏa mãn \[\left| {z - 2 - 2i} \right| = 1\]. Số phức z−i có mô đun nhỏ nhất là:

Xem đáp án

Ta có:

\[\left| {z - i} \right| = \left| {\left( {z - 2 - 2i} \right) + \left( {i + 2} \right)} \right| \ge \left| {\left| {z - 2 - 2i} \right| - \left| {i + 2} \right|} \right| = \left| {1 - \sqrt 5 } \right| = \sqrt 5 - 1\]

Vậy\[\left| {z - i} \right| \ge \sqrt 5 - 1\]nên\[\min \left| {z - i} \right| = \sqrt 5 - 1\]

Đáp án cần chọn là: A


Câu 3:

Xác định số phức z thỏa mãn \[\left| {z - 2 - 2i} \right| = \sqrt 2 \] mà \[\left| z \right|\;\]đạt giá trị lớn nhất.

Xem đáp án

Sử dụng bất đẳng thức chứa dấu giá trị tuyệt đối ta có:

\[\sqrt 2 = |z - 2 - 2i| \ge |z| - | - 2 - 2i| = |z| - 2\sqrt 2 \Rightarrow |z| \le 3\sqrt 2 \]

Suy ra\[\max |z| = 3\sqrt 2 \]

Kiểm tra các đáp án đã cho chỉ có đáp án C thỏa mãn.

Đáp án cần chọn là: C


Câu 4:

Cho số phức z có \[\left| z \right| = 2\;\]thì số phức \[w = z + 3i\;\] có mô đun nhỏ nhất và lớn nhất lần lượt là

Xem đáp án

Sử dụng bất đẳng thức chứa dấu giá trị tuyệt đối ta có

\[\left| {|z| - |3i|} \right| \le |z + 3i| \le \left| {|z| + |3i|} \right| \Leftrightarrow |2 - 3| \le |w| \le |2 + 3| \Leftrightarrow 1 \le |w| \le 5\]

Nhận thấy với\[z = - 2i\] thì \[\left| w \right| = 1\] và với\[z = 2i\] thì\[\left| w \right| = 5\] nên 1 và 5 là GTNN và GTLN của \[\left| w \right|\]

Đáp án cần chọn là: D


Câu 5:

Cho số phức z thoả \[\left| {z - 3 + 4i} \right| = 2\;\]và \[w = 2z + 1 - i\]. Khi đó \[\left| w \right|\] có giá trị lớn nhất là:

Xem đáp án

Ta có\[|z - 3 + 4i| = 2 \Leftrightarrow |2z - 6 + 8i| = 4.\]

Theo bất đẳng thức chứa dấu giá trị tuyệt đối có

\[4 = |2z - 6 + 8i| = |(2z + 1 - i) - (7 - 9i)| \ge |2z + 1 - i| - |7 - 9i| = |w| - \sqrt {130} \]

\[ \Rightarrow |w| - \sqrt {130} \le 4 \Rightarrow |w| \le 4 + \sqrt {130} \]

Đáp án cần chọn là: D


0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận