Câu hỏi:
29/06/2022 105Trong các số phức z thỏa mãn \[\left| {z + 3 + 4i} \right| = 2\;\], gọi \[{z_0}\] là số phức có mô đun nhỏ nhất. Khi đó:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Giả sử\[z = a + bi\left( {a,b \in R} \right)\] ta có:\[\left| {z + 3 + 4i} \right| = 2 \Leftrightarrow \left| {(a + 3) + (b + 4)i} \right| = 2 \Leftrightarrow {(a + 3)^2} + {(b + 4)^2} = 4\]
Do đó tập hợp điểm biểu diễn số phức z thuộc đường tròn tâm I(−3;−4) và bán kính r=2
Từ hình vẽ ta thấy số phức \[{z_0}\] có mô đun nhỏ nhất nếu \[{z_0}\] có điểm biểu diễn là M.
Ta có\[\overrightarrow {OI} = ( - 3; - 4)\] nên đường thẳng đi qua O và I là OI:
\(\left\{ {\begin{array}{*{20}{c}}{x = 3t}\\{y = 4t}\end{array}} \right. \Rightarrow M(3t;4t)\)
Mặt khác\[M \in \left( C \right)\] nên:
\[{(3t + 3)^2} + {(4t + 4)^2} = 4 \Leftrightarrow 25{t^2} + 50t + 21 = 0\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{t = \frac{{ - 3}}{5}}\\{t = \frac{{ - 7}}{5}}\end{array}} \right.\)
\[M\left( {\frac{{ - 9}}{5};\frac{{ - 12}}{5}} \right)\] hoặc\[M\left( {\frac{{ - 21}}{5};\frac{{ - 28}}{5}} \right)\]
\[M\left( {\frac{{ - 9}}{5};\frac{{ - 12}}{5}} \right)\] thuộc (C) và gần O nhất.
\[ \Rightarrow z = \frac{{ - 9}}{5} - \frac{{12}}{5}i \Rightarrow \left| z \right| = 3\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho số phức z thỏa mãn\[\left| {z - 1 - 2i} \right| = 4\]. Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \[\left| {z + 2 + i} \right|.\]Tính \[S = {M^2} + {m^2}\]
Câu 2:
Cho số phức z thoả \[\left| {z - 3 + 4i} \right| = 2\;\]và \[w = 2z + 1 - i\]. Khi đó \[\left| w \right|\] có giá trị lớn nhất là:
Câu 3:
Đề thi THPT QG - 2021 - mã 101
Xét các số phức z,w thỏa mãn \[\left| z \right| = 1\;\]và \[\left| w \right| = 2\]. Khi \[\left| {z + i\overline {\rm{w}} - 6 - 8i} \right|\] đạt giá trị nhỏ nhất, \[\left| {z - w} \right|\;\] bằng?
Câu 4:
Cho số phức z thỏa mãn \[\left| {z - 2 - 2i} \right| = 1\]. Số phức z−i có mô đun nhỏ nhất là:
Câu 5:
Với hai số phức bất kì \[{z_1},{z_2}\], khẳng định nào sau đây đúng:
Câu 6:
Xác định số phức z thỏa mãn \[\left| {z - 2 - 2i} \right| = \sqrt 2 \] mà \[\left| z \right|\;\]đạt giá trị lớn nhất.
Câu 7:
Tìm giá trị lớn nhất của \[\left| z \right|,\]biết rằng z thỏa mãn điều kiện \[\left| {\frac{{ - 2 - 3i}}{{3 - 2i}}z + 1} \right| = 1\].
về câu hỏi!